Реферат: Нечеткие множества в системах управления

которые используются при работе с лингвистическими неопределенностями.

Умножение на число. Если a - положительное число, такое, что a mA (x ) £ 1, то нечеткое множество aA имеет функцию принадлежности:

maA(x ) = amA(x ).

Выпуклая комбинация нечетких множеств. Пусть A 1 , A 2 ,.., A n - нечеткие множества универсального множества E , а w1 , w2 , ..., wn - неотрицательные числа, сумма которых равна 1.

Выпуклой комбинацией A 1 , A 2 ,.., A n называется нечеткое множество A с функцией принадлежности:

"x ÎE mA (x 1 , x 1 ,..., x n ) = w1 mA1 (x ) + w2 mA2 (x ) + ... + w n m Ai (x ).

Декартово произведение нечетких множеств. Пусть A 1 , A 2 , ..., A n - нечеткие подмножества универсальных множеств E 1 , E 2 , ..., E n соответственно. Декартово произведение A = A 1 ´A 2 ´ ...´A n является нечетким подмножеством множества E = E 1 ´E 2 ´... ´E n с функцией принадлежности:

mA (x 1 , x 1 , ..., x n ) = min{ mA1 (x 1 ), mA2 (x 2 ) , ... , mAi (x n ) }.

Оператор увеличения нечеткости используется для преобразования четких множеств в нечеткие и для увеличения нечеткости нечеткого множества.

Пусть A - нечеткое множество, E - универсальное множество и для всех x ÎE определены нечеткие множества K(х ) . Совокупность всех K(х ) называется ядром оператора увеличения нечеткости Ф . Результатом действия оператора Ф на нечеткое множество A является нечеткое множество вида:

Ф(A, K) = mA (x )K(х ),

где mA (x )K(х ) - произведение числа на нечеткое множество.

Пример :

E = {1,2,3,4};

A = 0,8/1+0,6/2+0/3+0/4;

K (1) = 1/1+0,4/2;

K (2) = 1/2+0,4/1+0,4/3;

K (3) = 1/3+0,5/4;

K (4) = 1/4.

Тогда

Ф (A,K) = mA (1) K (1) Èm A (2)K (2) Èm A (3)K (3)Èm A (4)K (4) =

= 0,8(1/1+0,4/2) È 0,6(1/2+0,4/1+0,4/3) =

= 0,8/1+0,6/2+0,24/3.

Четкое множество a-уровня (или уровня a) . Множеством a-уровня нечеткого множества A универсального множества E называется четкое подмножество A a универсального множества E , определяемое в виде:

A a ={x /mA (x )³a}, где a£1.

Пример: A = 0,2/x1 + 0/x2 + 0,5/x3 + 1/x4 ,

тогда A0.3 = {x 3 ,x 4 },

A0.7 = {x 4 }.

Достаточно очевидное свойство: если a1 ³a2 , то A a1 £A a2 .

К-во Просмотров: 1169
Бесплатно скачать Реферат: Нечеткие множества в системах управления