Реферат: Объем фигур вращения правильных многогранников

Вычислить объем тела, полученного вращением куба относительно оси, проходящей через середины его противоположных ребер, если ребро куба равно а.

Решение:


В результате вращения образуется тело, состоящее из двух гиперболоидов вращения с общим основанием (см. рис.).



Таким образом,

, где

RВ равно половине ребра куба, т.е. равно ;

RН – радиус окружности, описанной около прямоугольника со сторонами , следовательно, равен .

H – высота тела вращения – равна половине диагонали грани куба, т.е. равна .

RСР можно найти как медиану в прямоугольном треугольнике с катетами и RВ, гипотенуза которого равна RН (смотри рисунок).

Таким образом, получаем,

.

Окончательно получаем:

.

Ответ:


Задача 2.3.

Вычислить объем тела, полученного вращением куба относительно оси, проходящей через центры его противоположных граней, если ребро куба равно а.

Решение:

Фигурой вращения является цилиндр, основанием которого служит окружность, описанная около квадрата (грани куба). Высота цилиндра (H) равна ребру куба и равна а.


.

Так как в основании цилиндра находится окружность, описанная около квадрата, значит

; ;

Ответ:


Октаэдр

Задача 3.1.

Вычислить объем тела, полученного вращением октаэдра относительно оси, проходящей через противоположные вершины, если ребро октаэдра равно а.

Решение:

В данном случае прямые (образующие поверхности) пересекают ось вращения, значит, в результате вращения получаются конические поверхности с общим основанием.


;

К-во Просмотров: 687
Бесплатно скачать Реферат: Объем фигур вращения правильных многогранников