Реферат: Представление численной информации в ЭВМ. Системы счисления
Чтобы овладеть любой системой счисления, надо уметь выполнять в ней арифметические операции. Арифметические операции в двоичной системе счисления выполняются так же, как и в десятичной в соответствии с таблицами поразрядных вычислений.
Сложение в двоичной системе счисления производится по правилам сложения полиномов. Поэтому при сложении чисел А и В i-й разряд суммы Si и перенос Пi из данного разряда в (i+1) разряд будет определяться в соответствии со следующим выражением:
аі +bі + Пі-1 =Sі +Пі+1
аі | bі | Пі-1 | Sі | Пі+1 |
0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 |
Таблица умножения двух двоичных чисел полностью определяется двумя правилами:
- умножение любого числа на ноль дает в результате ноль,
- умножение любого числа на 1 оставляет его без изменения, т.е. результат равен исходному числу.
4.1 Навыки обращения с двоичными числами
Хотя все правила выполнения операций в двоичной системе счисления очень просты, но тем не менее при работе с двоичными числами из-за отсутствия навыков возникают разного рода неудобства. Ниже приведены некоторые простые приемы, которые позволяют довольно свободно обращаться с двоичными числами.
Таблица 4.1.
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2n | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
1. Число 100...00 = 2n .
n нулей
Необходимо знать наизусть десятичные значения чисел, представленных в таблице 4.1.
2. Число 111...11= 2n -1.
n единиц
3. Необходимо знать наизусть десятичные значения двоичных чисел от 0 до 31 включительно. Эти числа в дальнейшем будут называться “малыми числами”.
4. Двоичное число
А= аn - k +5 аn - k +4 аn - k +3 аn - k +2 аn - k +1 000...000
малое число k нулей равно а2k .
Пример. 11011000=11011х23 = 27 х 8 = 216.
Двоичное число
А= аn - k +5 аn - k +4 аn - k +3 аn - k +2 аn - k +1 00...00 b5 b4 b3 b2 b1 = а х 2k + b
малое число a малое число b
k разрядов
Пример. 10110000101 = 1011 х 27 + 101 = 11 х 128 + 5 = 1413.
5. Если в n- разрядном числе много единиц и мало нулей, то для определения его количественного эквивалента можно из n разрядного числа, записанного одними единицами, вычесть малое число, в котором разряды со значением 1 соответствуют разрядам исходного числа с нулевым значением и наоборот.
Пример. 11111101001 соответствует
11111111111 = 211 - 1
10110 = 22
11111101001