Реферат: Представление численной информации в ЭВМ. Системы счисления
6. Чтение двоичных дробей
А= 0,000...001 = 2- n
n-1 нулей
Дробь А = 0,111...111 = 1 - 2- k .
k единиц
Двоичная дробь читается по тем же правилам, что и десятичная: разряды справа от запятой читаются как целое число, которое является числителем; знаменатель читается как целое число, являющееся 2k , причем k - номер младшего разряда справа от запятой.
5. Формы представления двоичных чисел в ЭВМ
Машинное представление числа – это представление числа в разрядной сетке ЭВМ.
Машинное изображение числа условно обозначают [A].
При этом А=[A]kA ,
где kA – масштабный коэффициент, величина которого зависит от формы представления числа в ЭВМ.
Под формой представления числа в ЭВМ понимают свод правил, позволяющий установить взаимное соответствие между записью числа и его количественным эквивалентом.
Если произвольное вещественное число А`=[A]kA , то такое число представлено в разрядной сетке машины точно. Если А`≠[A]kA , то произвольное вещественное число может быть представлено в машине приближенно или вообще не может быть представлено. При приближенном представлении вещественное число А` заменяется некоторым числом [А], принадлежащим множеству машинных чисел. Множеству машинных чисел принадлежат только числа, кратные двум, так как любые два попарно соседних машинных числа отличаются друг от друга на величину 2- n , где n - количество разрядов.
Аmin ‹ |A| ‹ Amax
Если |A| ‹ Amin , такое число называют машинным нулем. Числа, большие чем Amax , не могут быть представлены. В этом случае говорят о переполнении разрядной сетки.
Существует три формы представления чисел в ЭВМ: естественная, с фиксированной запятой и нормальная (с плавающей запятой).
Естественной формой записи числа называется запись числа в виде полинома, представленного в сокращенном виде:
А= аn an-1 ... a1 a0 a--1 a--2 ... a--k
При этом отсчет весов разрядов ведется от запятой. Запятая ставится на строго определенном месте – между целой и дробной частью числа. Поэтому для каждого числа необходимо указать положение его запятой в одном из разрядов кода, т.е. в общем случае место положения запятой должно быть предусмотрено в каждом разряде. Обычно такую форму представления используют в калькуляторах.
Если место запятой в разрядной сетке машины заранее фиксировано, то такое представление называется представлением с фиксированной запятой (точкой).
В большинстве ЭВМ с фиксированной запятой числа, с которыми оперирует машина, меньше единицы и представлены в виде правильных дробей, т.е. запятую фиксируют перед старшим разрядом числа, причем числа, больше единицы, приводятся к такому виду при помощи масштабного коэффициента КА . Представление чисел в виде правильных дробей обусловлено необходимостью уменьшить возможность переполнения разрядной сетки машины, т. е. уменьшить опасность потери значащих цифр старших разрядов при выполнении арифметических операций.
Результат умножения никогда не выходит за пределы разрядной сетки, если запятая расположена перед старшим разрядом. Но в этом случае результаты сложения и деления могут выйти за пределы разрядной сетки (при операции сложения — не более чем на один разряд).
Можно было бы оперировать только малыми числами, так как вероятность переполнения при их сложении мала. Однако это приводит к снижению точности представления чисел и точности вычислений. Поэтому всегда стремятся использовать числа, величины которых близки к максимальному значению. Однако при этом на них накладываются следующие ограничения: 1) абсолютная величина суммы двух чисел должна быть меньше единицы; 2) делитель по абсолютной величине должен быть больше делимого.
В ячейке машины с фиксированной перед старшим разрядом запятой число записывается в разрядную сетку в виде значащей части дроби со своим знаком, т. е. для записи n-значной дроби разрядная сетка должна содержать n + 1 разряд.
Разрядная сетка или формат числа в двоичной системе счисления имеет вид:
Запятая
Знак | 2-1 | 2-2 | 2-n |
n+1
Здесь n разрядов используют для изображения цифровой части числа и 1 – для знака.