Реферат: Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab
б) Двойные интегралы сводятся к вычислению повторных определённых интегралов, один из которых является внутренним, а другой внешним. Внутренний интеграл является подынтегральной функцией для внешнего интеграла. Можно было бы для численных вычислений написать некоторую цепочку вычислений, в которой многократные вычисления подынтегральной функции сводились бы к многократным вызовам функции quad. Однако нет необходимости делать это самостоятельно, так как в системе MATLAB для этого имеется специальная функция dblquad.
Задача 8. Вычислить интеграл , где .
Программа:
Результат:
function z=fof(x,y)
z=x.*sin(y)+y.*sin(x); >> format long
>> dblquad('fof',0,1,1,2)
ans =
1.16777110966887
Задача 9. С помощью символьных вычислений получить следующие интегралы , , , , , где .
Программа:
symsxy
z=sym('x*sin(y)+y*sin(x)');
i1=int(z,'x')
i2=int(z,'x',0,1)
i3=int(int(z,'x'),'y')
i4=int(int(z,'x',1,2),'y',0,1)
digits(14);
number4=vpa(i4)
i5=int(int(x+y,'y',x,1),'x',0,1) i1 =
1/2*x^2*sin(y)-y*cos(x)
i2 =
1/2*sin(y)-y*cos(1)+y
i3 =
-1/2*x^2*cos(y)-1/2*y^2*cos(x)
i4 =
-1/2*cos(2)-cos(1)+3/2
number4 =
1.1677711124054