Реферат: Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab
1/2
Так как символьные вычисления не дают погрешности метода вычисления и сами по себе они более точные, то можно увидеть, что функция dblquad даёт точный результат до 7 знака после запятой.
в) Из высшей математики известно, что к определенным и двойным интегралам могут быть сведены многие другие типы интегралов, например поверхностный интеграл 1-го рода. Так как при его нахождении используется дифференцирование под знаком интеграла, то использовать численные вычисления некорректно.
Задача 10. Вычислить поверхностный интеграл 1-го рода: , где S – часть плоскости , лежащая в первом октанте (по теореме 2).
Программа: Результат:
symsxyzf1 f2
f1=1-x-y;
f2=x*y*z;
fun=subs(f2,z,f1)
d=1+diff(f1,x)^2+diff(f1,y)^2
syms x1 x2 y1 y2
x1=sym('0');
x2=sym('1');
y1=sym('0');
y2=sym('1-x');
intpov1=int(int(fun*sqrt(d),'y',y1,y2),'x',x1,x2)
digits(10);
number=vpa(intpov1) fun =
x*y*(1-x-y)
d =
3
intpov1=
1/120*3^(1/2)
number =
1443375673e-1
Задача 11. Вычислить поверхностный интеграл 1-го рода , где S - сфера (по теореме 3).
Сначала создадим функцию, описывающую поверхность по которой происходит интегрирование:
function [x,y,z]=pov;
syms x y z u v a