Реферат: Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab

1/2

Так как символьные вычисления не дают погрешности метода вычисления и сами по себе они более точные, то можно увидеть, что функция dblquad даёт точный результат до 7 знака после запятой.

в) Из высшей математики известно, что к определенным и двойным интегралам могут быть сведены многие другие типы интегралов, например поверхностный интеграл 1-го рода. Так как при его нахождении используется дифференцирование под знаком интеграла, то использовать численные вычисления некорректно.

Задача 10. Вычислить поверхностный интеграл 1-го рода: , где S – часть плоскости , лежащая в первом октанте (по теореме 2).

Программа: Результат:

symsxyzf1 f2

f1=1-x-y;

f2=x*y*z;

fun=subs(f2,z,f1)

d=1+diff(f1,x)^2+diff(f1,y)^2

syms x1 x2 y1 y2

x1=sym('0');

x2=sym('1');

y1=sym('0');

y2=sym('1-x');

intpov1=int(int(fun*sqrt(d),'y',y1,y2),'x',x1,x2)

digits(10);

number=vpa(intpov1) fun =

x*y*(1-x-y)

d =

3

intpov1=

1/120*3^(1/2)

number =

1443375673e-1

Задача 11. Вычислить поверхностный интеграл 1-го рода , где S - сфера (по теореме 3).

Сначала создадим функцию, описывающую поверхность по которой происходит интегрирование:

function [x,y,z]=pov;

syms x y z u v a

К-во Просмотров: 478
Бесплатно скачать Реферат: Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab