Реферат: Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета

Следовательно, наибольший общий делитель чисел a и b совпадает с последним ненулевым остатком r n в алгоритме Евклида для чисел a и b .

Пример. Найти НОД(160, 72).

Применим к данным числам алгоритм Евклида:

160 = 72×2 + 16, 72 = 16×4 + 8, 16 = 8×2. (2)

Следовательно, НОД(160, 72) = 8.

20 . Теорема (о линейном представлении НОД). Если d - наибольший общий делитель чисел a и b , то существуют такие целые числа x и y , что выполняется равенство : d = xa + yb .

ð Допустим, что числа a и b связаны следующими соотношениями:

a = bq 1 + r 1 ,
b = r 1 q 2 + r 2 ,
r 1 = r 2 q 3 + r 3 ,
. . . . . . . . . . . . .
rn -2 = rn-1 qn-1 + rn .

Докажем, что каждое из чисел r k линейно выражается через a и b с целыми коэффициентами. Для r 1 утверждение тривиально: r 1 = a - bq 1 . Считая, что каждое из чисел r 1 , r 2 , . . . , rn-1 является целочисленной линейной комбинацией чисел a и b (r k = ak a + bk b ), имеем

rn = an-2 a + bn-2 b - (an-1 a + bn-1 b ) qn-1 = (an-2 - an-1 ) a + (bn-2 - bn-1 qn-1 )b . ð

Пример. Найти линейное представление НОД(160, 72).

Решение. Из второго равенства системы (2) следует, что 8 = 72 - 16×4, а из первого равенства получим, что 16 = 160 - 72×2. Из двух полученных равенств находим: 8 = 72 - 16 × 4 = 72 - (160 - 72 × 2) × 4 = (-4) × 160 + 9 × 72.

Таким образом, искомое представление НОД имеет вид:

8 = (-4) × 160 + 9 × 72.

30 . Связь алгоритма Евклида с непрерывными дробями. Пусть a - рациональная несократимая дробь . Для разложения числа a в непрерывную цепную дробь можно воспользоваться алгоритмом Евклида:

Следовательно, , откуда

Непрерывные дроби можно использовать для решения различных теоретико-числовых задач.

1. Линейное представление наибольшего общего делителя

Пример 1. Найти линейное представление наибольшего общего делителя чисел (59, 163).

Решение. Разложим в непрерывную дробь число:

= [2; 1, 3, 4, 1, 2].

Cледовательно, можно теперь заполнить таблицу:

qs 2 1 3 4 1 2
Ps 1 2 3 11 47 58 163
Qs 0 1 1 4 17 21 59
e s +1 -1 +1 -1 +1 -1

Отсюда получаем 59 × 58 - 163 × 21 = -1 или 59 × (-58) + 163 × 21 = 1.

2. Решение линейных диофантовых уравнений

Как практически находить какое-нибудь решение линейного неопределенного уравнения

ax + by = c при (a , b )= 1, c= 1 ?

Можно воспользоваться алгоритмом Евклида, из которого легко получить линейное представление НОД чисел a , b ,или представить дробь в виде последней подходящей , откуда aQn - bPn = (-1)n .

Пример. Решить диофантово уравнение 163x + 59y = 1.

Решение. Мы проверили раньше, что 163 × 21 + 59 × (-58) = 1, следовательно, общее решение имеет вид:

6. Базис и размерность векторного пространства

10 . Линейные комбинации и линейные оболочки векторов. Выражение вида = a 1 e 1 + . . . + a n en , где a i - числа, ei - векторы из пространства V, называется линейной комбинацией векторов ei ; числа a i называются коэффициентами линейной комбинации.

К-во Просмотров: 343
Бесплатно скачать Реферат: Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета