Реферат: Разработка управленческих решений в оптимизации объема закупок
1. возможные варианты действия игроков;
2. объёмы информации каждой из сторон о поведении другой стороны (степень информированности);
3. результат игры, к которому приводит совокупность ходов.
Игра называется игрой с нулевой суммой, если один игрок выигрывает столько, сколько проигрывает.
Развитие игры предоставляется последовательностью ходов.
«Ходом» называется выбор одного из предусмотренного правилами игры действий и его реализация.
Ходы делятся на личные и случайные.
Личные ходы – это сознательный выбор игроком одного из возможных вариантов действий и его реализация.
Случайный ход – выбор из ряда возможностей использования ресурсов, осуществленный механизмом случайного выбора (например, бросание монеты).
Стратегией игрока называют совокупность мер, назначенных из правил выбора варианта действий при каждом личном ходе, продиктованном в сложившейся на момент игры. Количество стратегий может быть конечным или бесконечным.
Оптимальная стратегия – это стратегия, которая при многократном повторении игры обеспечивает игроку максимальную возможность среднестатистического выигрыша.
Модель игры – вспомогательный объект, описывающий механизм взаимодействия игроков с заданной игрой.[9]
2. Кооперативные игры в процессе РУР.
Игра называется кооперативной (коалиционной), если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия.
В коооперативных играх, с возможностью передачи средств от одного игрока к другому, невозможно применять понятие индивидуальных платежей. Вместо этого используют так называемую характеристическую функцию, определяющую выигрыш каждой коалиции игроков. При этом предполагается, что выигрыш пустой коалиции равен нулю.
Основания такого подхода можно найти в книге фон Неймана и Моргенштерна. Изучая нормальную форму для коалиционных игр, они рассудили, что если в игре с двумя сторонами образуется коалиция С, то против нее выступает коалиция N / C . Образуется как бы игра для двух игроков.
Но так как вариантов возможных коалиций много, то выигрыш для С будет некоторой характеристической величиной, зависящей от состава коалиции.[10]
3. Бескоалиционные игры в задачах ведения переговоров.
Такого класса игры (часто называемые «игры 2х лиц с произвольной суммой») всегда конечны и имеют 2х игроков, которые делают ходы. Один ход игрока – одна стратегия. Несколько ходов – несколько стратегий.
После определения колчества ходов каждый игрок получает выигрыш в соответствии со своей матрицей выигрыша.
Конечная бескоалиционная игра 2х игроков полностью определяется 2мя матрицами выигрышей 2х игроков. Поэтому такие игры называются ещё биматричные.[11]
Решением игры является пересечение множеств решений одного игрока и множеств решений другого игрока.
Если каждый игрок будет применять свои стратегии, исходя только из матриц своих выигрышей, то их оптимапльные средние выигрыши будут совпадать с их выигрышами при ситуации равновесия.
4. Статистические решения или игры с «природой».
На практике часто приходится сталкиваться с принятием решений. Этими причинами могут быть случайный спрос, полнота и сроки долгосрочного планирования, любые форс-мажорные обстоятельства.
Здесь имеет место игра с природой, т.е. нет сознательной и намеренно действующей стороны.
В зависимости от условий внешней среды и уровня информированности ЛПР различают следующие классы задач принятия решений:
1. в условиях риска;
2. в условиях неопределенности;