Реферат: Решение дифференциального уравнения с последующей аппроксимацией

2 2 = 1.64763 * 10 - 4

3 = F( x3 ) - y3 = 2.109553 - 2.125049 = - 0.015496

3 2 = 2.40126 * 10 - 4

4 = F( x4 ) - y4 = 2.14626 - 2.157721 = - 0.011461

4 2 = 1.31355 * 10 - 4

5 = F( x5 ) - y5 = 2.202831 - 2.205613 = - 0.002782

5 2 = 7.73953 * 10 - 6

6 = F( x6 ) - y6 = 2.279266 - 2.271475 = 0.007791

6 2 = 6.06997 * 10 - 5

7 = F( x7 ) - y7 = 2.375567 - 2.359045 = 0.06522

7 2 = 2.72977 * 10 - 4

8 = F( x8 ) - y8 = 2.491732 - 2.473328 = 0.08404

8 2 = 3.38707 * 10 - 4

9 = F( x9 ) - y9 = 2.627762 - 2.620626 = 0.007136

9 2 = 5.09225 * 10 - 5

10 = F( x10 ) - y10 = 2.783656 - 2.807662 = - 0.024006

10 2 = 5.76288 * 10 -4

11

d = Ö 0.0021939515 = Ö 1.9945013 * 10 - 4 = 0.014122681 1.412268 * 10 - 2

Данные расчётов снесены в Таблицу 2.

Таблица 2. Расчёт погрешности аппроксимации.

I

xi

yi

F(xi )

i

i 2

0

0.7

2.1

2.118622

0.018622

3.46779 * 10 - 4

1

0.8

2.09763

2.095734

- 0.001896

3.59482 * 10 - 6

2

0.9

2.105547

2.092711

- 0.012836

1.64763 * 10 - 4

3

1.0

2.125049

2.109553

- 0.015496

2.40126 * 10 - 4

4

1.1

2.157721

2.14626

- 0.011461

1.31355 * 10 - 4

5

1.2

2.205613

2.202831

- 0.002782

7.73953 * 10 - 6

6

1.3

2.271475

2.279266

0.007791

6.06997 * 10 - 5

7

1.4

2.359045

2.375567

0.06522

2.72977 * 10 - 4

8

1.5

2.473328

2.491732

0.08404

3.38707 * 10 - 4

9

1.6

2.620626

2.627762

0.007136

5.09225 * 10 - 5

10

1.7

2.807662

2.783656

- 0.024006

5.76288 * 10 - 4

График погрешности аппроксимации представлен на рисунке 4.

График аппроксимирующей

функции представлен на рисунке 5.

6. ПОСТРОЕНИЕ БЛОК-СХЕМЫ И РАЗРАБОТКА ПРОГРАММЫ АППРОКСИМАЦИИ

Блок-схема алгоритма решения задачи аппроксимации методом наименьших квадратов представлена на Рис. 6.

Первым шагом осуществляется ввод значений X(I),Y(I),N.

Далее обнуляются значения всех коэффициентов. В цикле рассчитываются коэффициенты 3-х линейных уравнений. (см. п. 2.2). После цикла приравниваем одинаковые коэффициенты в матрице. Потом выполняется подпрограмма решения линейных уравнений.

Следующим шагом происходит описание функции пользователя:

FNY(X) = K(1) X 2 + K(2) X + K(3)

Следующий цикл находит значения аппроксимирующей функции, разность между этими значениями и корнями дифференциального уравнения Y(I), квадрат разности, а также производит их суммирование. Далее находится величина погрешности аппроксимации и все данные выводятся на экран.

К-во Просмотров: 406
Бесплатно скачать Реферат: Решение дифференциального уравнения с последующей аппроксимацией