Реферат: Решение дифференциального уравнения с последующей аппроксимацией
f( x4 ; y4 ) = 1.1 + cos (2.157721 / Ö0.3 ) = 0.401751
x5 = 1.1 + 0.1 = 1.2
y5* = 2.157721+ 0.1 * 0.401751 = 2.1978961
y5 = 2.157721 + 0.1 * (0.401751 + 0.556089) / 2 = 2.205613
f( x5 ; y5 ) = 1.2 + cos (2.205613 / Ö1.3 ) = 0.566933
x6 = 1.2 + 0.1 = 1.3
y6* = 2.205613 + 0.1 * 0.566933 = 2.2623063
y6 = 2.205613 + 0.1 * (0.566933 + 0.750302) / 2 = 2.271475
f( x6 ; y6 ) = 1.3 + cos (2.271475 / Ö0.3 ) = 0.764362
x7 = 1.3 + 0.1 = 1.4
y7* = 2.271475 + 0.1 * 0.764362 = 2.347911
y7 = 2.271475 + 0.1 * (0.764362 + 0.987033) / 2 = 2.359045
f( x7 ; y7 ) = 1.4 + cos (2.359045/ Ö0.3 ) = 1.005629
x8 = 1.4 + 0.1 = 1.5
y8* = 2.359045 + 0.1 * 1.005629 = 2.4596079
y8 = 2.359045 + 0.1 * (1.005629 + 1.280033) / 2 = 2.473328
f( x8 ; y8 ) = 1.5 + cos (2.473328 / Ö0.3 ) = 1.304536
x9 = 1.5+ 0.1 = 1.6
y9* = 2.473328 + 0.1 * 1.304536 = 2.6037816
y9 = 2.473328 + 0.1 * (1.304536 + 1.6414317) / 2 = 2.620626
f( x9 ; y9 ) = 1.6 + cos (2.620626 / Ö0.3 ) = 1.6721351
x10 = 1.6 + 0.1 = 1.7
y10* = 2.620626 + 0.1 * 1.6721351 = 2.7878395
y10 = 2.620626 + 0.1 * (1.6721351 + 2.068584) / 2 = 2.807662
Для оценки погрешности вычислений найдём решение дифференциального уравнения с шагом h / 2 до третьей точки:
f( x0 ; y0 ) = 0.7 + cos (2.1 / Ö0.3 ) = - 0.069675
x1 = 0.7 + 0.05 = 0.75
y1* = 2.1 + 0.05 * (- 0.069675) = 2.096516
y1 = 2.1 + 0.05 * ((- 0.069675) + ( - 0.02372)) / 2 = 2.097665