Реферат: Решение дифференциального уравнения с последующей аппроксимацией
Работу выполнила:
студентка I курса
специальности РРТ (ускор.)
Турчина
шифр: 011р-469
2001 г.
С О Д Е Р Ж А Н И Е
Индивидуальное задание - 3
1. Решение дифференциального уравнения методом Эйлера - Коши - 4
1.1. Теоретические сведения - 4
1.2. Ручной расчёт решаемой задачи - 6
2. Аппроксимация. Метод наименьших квадратов - 9
2.1. Теоретические сведения - 9
2.2. Ручной расчёт коэффициентов системы линейных уравнений - 10
3. Решение системы уравнений методом Гаусса - 11
4. Нахождение значений аппроксимирующей функции - 13
5. Расчёт погрешности аппроксимации - 14
6. Построение блок-схемы и разработка программы аппроксимации - 16
Литература - 21
ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ
1. Решить дифференциальное уравнение y = x + cos ( y / Ö0.3 ) с начальными условиями x0 = 0.7 y0 = 2.1 на интервале [ 0.7 ; 1.7 ] с шагом h = 0.1.
2. Оценить погрешность вычислений при решении дифференциального уравнения методом Эйлера - Коши.
3. Аппроксимировать полученное в п.1. решение параболой методом наименьших квадратов.
4. Рассчитать погрешность аппроксимации.
5. Построить графики решения дифференциального уравнения, аппроксимирующей функции и погрешности аппроксимации.
6. Составить блок-схемы алгоритмов и программы для решения дифференциального уравнения, вычисления коэффициентов аппроксимирующей параболы, расчёта погрешности аппроксимации на языке QBASIC. На печать выдать :
- значения функции y( xi ), являющейся решением дифференциального уравнения в точках xi , найденные с шагом h и с шагом h/2 ;
- значения аппроксимирующей функции F( xi ) в точках xi ;
- значение погрешности аппроксимации i = F( xi ) - yi .
- величину средне - квадратичного отклонения.
1. РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ
МЕТОДОМ ЭЙЛЕРА - КОШИ
1.1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
--> ЧИТАТЬ ПОЛНОСТЬЮ <--