Реферат: Решение дифференциального уравнения с последующей аппроксимацией

Рис. 6. Блок-схема алгоритма решения задачи аппроксимации методом наименьших квадратов.

CLS

PRINT " Нахождение коэффициентов по методу Эйлера - Коши"

X0 = 0.7

XN = 1.7

Y0 = 2.1

H = 0.1

N = (XN - X0) / H

DIM X(N)

DIM Y(N)

X(0) = X0

Y(0) = Y0

FOR I = 0 TO N - 1

X(I + 1) = X(I) + H

Y(I + 1)* = Y(I) + H * (X(I) + COS(Y(I) / SQR(0.3)))

Y(I +1) = Y(I)+H*((X(I)+COS(Y(I)/SQR(0.3)))+(X(I+1)+COS(Y(I+1)* / SQR(0.3))))/2

PRINT " X("; I; ")="; X(I), , "Y("; I; ")="; Y(I)

NEXT I

I = 10: PRINT " X("; I; ")="; X(I), "Y("; I; ")="; Y(I)

PRINT "Нахождение коэффициентов по методу наименьших квадратов"

PRINT "и погрешности аппроксимации"

a11 = 0: b1 = 0: a12 = 0: b2 = 0: a13 = 0: b3 = 0: a23 = 0: a33 = N + 1

FOR I = 0 TO N

a11 = a11 + X(I) ^ 4

a12 = a12 + X(I) ^ 3

a13 = a13 + X(I) ^ 2

a23 = a23 + X(I)

b1 = b1 + (X(I) ^ 2) * Y(I)

b2 = b2 + X(I) * Y(I)

К-во Просмотров: 401
Бесплатно скачать Реферат: Решение дифференциального уравнения с последующей аппроксимацией