Реферат: Решение дифференциального уравнения с последующей аппроксимацией
Рис. 6. Блок-схема алгоритма решения задачи аппроксимации методом наименьших квадратов.
CLS
PRINT " Нахождение коэффициентов по методу Эйлера - Коши"
X0 = 0.7
XN = 1.7
Y0 = 2.1
H = 0.1
N = (XN - X0) / H
DIM X(N)
DIM Y(N)
X(0) = X0
Y(0) = Y0
FOR I = 0 TO N - 1
X(I + 1) = X(I) + H
Y(I + 1)* = Y(I) + H * (X(I) + COS(Y(I) / SQR(0.3)))
Y(I +1) = Y(I)+H*((X(I)+COS(Y(I)/SQR(0.3)))+(X(I+1)+COS(Y(I+1)* / SQR(0.3))))/2
PRINT " X("; I; ")="; X(I), , "Y("; I; ")="; Y(I)
NEXT I
I = 10: PRINT " X("; I; ")="; X(I), "Y("; I; ")="; Y(I)
PRINT "Нахождение коэффициентов по методу наименьших квадратов"
PRINT "и погрешности аппроксимации"
a11 = 0: b1 = 0: a12 = 0: b2 = 0: a13 = 0: b3 = 0: a23 = 0: a33 = N + 1
FOR I = 0 TO N
a11 = a11 + X(I) ^ 4
a12 = a12 + X(I) ^ 3
a13 = a13 + X(I) ^ 2
a23 = a23 + X(I)
b1 = b1 + (X(I) ^ 2) * Y(I)
b2 = b2 + X(I) * Y(I)