Реферат: Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів"

ПЕДАГОГІЧНА ПРАКТИКА

Розробка учбового матеріалу для викладання вищої математики

на тему

"Наближені методи обчислення визначених інтегралів"

Зміст

Вступ

1. Постановка задачі наближеного інтегрування

2. Чисельні методи інтегрування

2.1 Метод прямокутників

2.2 Метод трапецій

2.3 Метод Симпсона

2.4 Практичне порівняння точності методів наближеного обчислення інтегралів 3-ма методами

3. Графічне інтегрування

Список використаної літератури

Вступ

Актуальність теми контрольної роботи полягає в тому, щопри розв’язанні низки математичних, фізичних або технічних задач застосовуються визначені інтеграли від функцій, первісні функції яких не виражаються через елементарні функції. Крім того, в окремих задачах доводиться мати справу з визначеними інтегралами, у яких самі підінтегральні функції не являються елементарними. Це приводить до необхідності розробки наближених методів обчислення визначених інтегралів.

Об’єктом роботи є визначені інтеграли, які не можуть бути представлені у вигляді комплексу елементарних функцій.

Предметом роботи є методи наближеного обчислення визначених інтегралів, первісна яких не може бути представлена у вигляді комплексу елементарних функцій.

Метою роботи є аналіз умов використання та оцінки похибок обчислень при застосуванні найбільш уживаних методів наближеного обчислення визначених інтегралів:

метод прямокутників;

метод трапецій;

метод Симпсона або метод парабол;

методів графічного інтегрування.

Інформаційною базою досліджень контрольної роботи є математичні монографії та учбові посібники з вищої математики по курсу „Методи обчислень" з взяттям за основу курсу учбового посібника Бойко Л.Т. „Основи чисельних методів: навч. посібник." - Дніпропетровськ: Вид-во ДНУ, 2009.

1. Постановка задачі наближеного інтегрування

Під чисельним інтегруванням розуміють наближене обчислення визначених інтегралів.

Якщо для функції , визначеної на відрізку , можно знайти первісну функцію, то визначений інтеграл розраховується за формулою функціонального інтегрування (1.1) [6]:

(1.1)

Якщо підінтегральна функція має складний аналітичний вираз, або задана таблично, то звичайні методи інтегрування, які вивчаються в математичному аналізі, непридатні, оскільки неможливо побудувати первісну. Тому доводиться обчислювати інтеграли наближено. Формули наближеного обчислення інтегралів називаються квадратурними формулами. Ці формули міняють оператор інтегрування на оператор сумування. Виникаюча при такій заміні похибка називається похибкою квадратурної формули.

Задача чисельного інтегрування функцій полягає в обчисленні визначеного інтеграла за значеннями інтегруємої функції в ряді точок відрізка інтегрування. Функцію заміняємо інтерполюємою функцією , а потім приблизно припускаємо [4]:

(1.2)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 356
Бесплатно скачать Реферат: Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів"