Реферат: Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів"

Геометричне зображення формули (2.3.7) показане на рисунку (2.8).

Наближене значення інтеграла (права частина наближеної рівності (2.3.7) - це площа криволінійної трапеції, яка зверху обмежена кусками парабол (крива показана пунктиром).

На кожному подвоєному відрізку графік функції наближається своєю параболою.

З формули (2.3.7) видно, що з ростом похибка дуже швидко зменшується.

2.4 Практичне порівняння точності методів наближеного обчислення інтегралів 3-ма методами

Застосовуючи ці три метода наведемо приклад:

Обчислимо наближене значення інтеграла

,

використовуючи квадратурні формули прямокутників, трапеції та Сімпсона. Для цього підготуємо таблицю значень підінтегральної функції у точках відрізка

Значення підінтегральної функції у вузлах
i xi f (xi )
0 0 0,00000000
1 0,1 0,10049875
2 0,2 0, 20396078
3 0,3 0,31320918
4 0,4 0,43081316
5 0,5 0,55901695
6 0,6 0,69971418
7 0,7 0,85445885
8 0,8 1,0244998
9 0,9 1,2108262
10 1 1,4142135

Квадратурні формули прямокутників (лівих, правих, центральних) дать такі результати:

,

У цьому прикладі інтеграл такий, що його точне значення можна обчислити, воно дорівнює (з точністю до сьомого розряду після коми)

Зауважимо, що хоча формула центральних прямокутників у цьому прикладі використана з вдвічі більшим кроком, ніж формули лівих та правих прямокутників, але результат вийшов ближчим до точного, ніж у двох інших методів.

За квадратурними формулами трапецій та Симпсона маємо такі результати:

Отже після обчислень за різними квадратурними формулами маємо такі наближені значення інтеграла:

; ;

З використаних формул більш точною є формула Симпсона, оскільки її алгебраїчний степінь точності на дві одиниці більший ніж у формули трапеції. Тому, користуючись апостеріорним методом оцінки похибки, в результаті, добутому за формулою Симпсона можна вважати три розряди після коми правильними, а четвертий розряд округленим тобто

Але, якщо порівняти з точним значенням інтеграла, то видно, що насправді результат, добутий за формулою Симпсона, має п’ять правильних розрядів після коми, шостий розряд округлений.

3. Графічне інтегрування

Задача графічного інтегрування полягає в наступному: за графіком неперервної функції потрібно побудувати графік її первісної функції.

(3.1)

Іншими словами, потрібно побудувати таку криву , ордината в кожній точці якої чисельно дорівнює площі криволінійної трапеції з основою , обмеженою даною кривою .

Для наближеної побудови графіка первісної функції розбиваємо площу відповідної криволінійної трапеції, обмеженої кривій , на вузькі вертикальні смужки за допомогою ординат, проведених у точках (рис.3.1) [2].

Рис.3.1 Графічне інтегрування функції f (x) з отриманням первісної функції F (x) [2]

Кожну з таких смужок заміняємо, використовуючи теорему про середнє, рівновеликим (по можливості) прямокутником з тією ж основою і висотою, рівною , ,де деяка проміжна точка -го по порядку відрізка , тобто думаємо:

К-во Просмотров: 362
Бесплатно скачать Реферат: Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів"