Реферат: Шпора по математическому анализу

( в кач-ве у(х) выбир. отн. Эйлера )

<= k|x-xi|+|x-xi|LM<=(k+) (28)

Восп. соотн. (20)

Пусть сетка будет равномерной

|y(x)-y(x)|<=(((k+ML))/h)(eL|x-x0|-1) (29)

|y(x)-y(x)|<= h(M+k/h)(eL|x-x0|-1) (30)

Оценка (30) наз-ся оценкой первого пор-ка точности. Задаваясь опред. точностью и зная числа k,M,L можно определить h таким обр. чтобы посл. произв. было <. Тогда соотв. и разн. между ф-ей

|y(x)-y(x)|< (32)



Лекция №14.

Линейные колебания.

1)Свободные колебания линейной системы без трения.

2)Свободные колебания линейной системы с трением.

3)Вынужленные колебания линейной системы без трения.

4)Вынужленные колебания линейной системы с трением.

az’’+bz’+cz=h(t) a,b,cR h(t)-комплексная ф-я: f(t)+ig(t) az’’+bz’+cz=f(t)+ig(t) z(t)=x(t)+iy(t) a(x’’+iy’’)+b(x’+iy’)+c(x+iy)=f+ig ax’’+bx’+cx+i(ay’’+by’+cy)=f+ig ax’’+bx’+cx=f(t) ay’’+by’+cy=g(t) если z(t) компл. реш. то его вещ. и мним. части явл. реш-м вещ. ур-й правой части котор.равны соответ. вещ. и мним. az’’+bz’+cz=pe^(iжt) (ж-каппа) L(iж)<>0 z=qe^(iжt)-реш-е ур-я

z’=qiжe^(iжt); z’’=q(iж)^2e^(iжt) (-aж^2+biж+c)qe^(iжt)=pe^(iжt) q=p/(-aж^2+biж+c) z(t)=e^(iжt)p/(-aж^2 +biж+c) p>0 pR Выделим вещ и мним части: z(t)=(cosжt+isinжt)p(1/(-aж^2+biж+c))=p(cosжt+isinжt)(-aж^2-biж+c)/((-aж^2+biж+c)(-aж^2-biж+c)=p(cosжt+isinжt)(-aж^2-biж+c)/((-aж^2+c)^2+(biж)^2)=(коля не дописал).

1)Свободные колебания линейной системы без трения описываются в след. виде: dІx/dtІ+aІx=0 a<>0 (1). kІ+aІ=0-характеристическое ур-е (2) k1,2=+-ia; e^(iat) e^(-iat) x=c1cosat+c2sinat- общее ур-е (3) или запис в след виде x=Asin(at+) A>0 (4) A(sinatcos+cosatsin)(тожд.=) с1cosat+c2sinat Acos=c2 Asin=c1 AІcosІ+AІsinІ=c1І+c2І= значит A=sqrt(c1І+c2І) sin=c1/A cos=c2/A tg=c1/c2 A-амплитуда колебаний a-частота -нач. фаза. aT=2 T=2/a-период колебаний a/2-число кол. в единицу времени. Ур-е (1) часто наз гармонич. осициллятора ’’+(g/l)sin=0, считают что колеб малее, sin=’’+(g/l)=0 (ур-е (1)) aІ=g/l T=2/a=2sqrt(l/g)

2)Свободные колебания линейной системы с трением: dІx/dtІ+2ndx/dt+aІx=0 (5) 0<n<a-сопр. мало n>=a-сопр. велико; kІ+2nk+aІ=0 (6) k1,2=-n+-isqrt(aІ-nІ) sqrt(aІ-nІ)=b Выпиш. компл реш-я (1): e^(-nt+ibt) e^(-nt-ibt) Выпиш вещ реш-я: x=e^(-nt)(c1cosbt+isinbt) c1,c2R (7) x=Ae^(-nt)sin(bt+) (8) Ae^(-nt)-перем. амплитуда b-частота если n мало то b примерно =a. Логорифмич. декремент затухания T=2/b T/2=/sqrt(aІ-nІ); e^(-n(t0+T/2))=e^(-nt0)e^(-nT/2); -e^(-nT/2=n/sqrt(aІ-nІ)-л.д.з.

3)Вынужленные колебания линейной системы без трения: dІ/dtІ+aІx=psint (9) a,p,>0 a-частота собств колеб; p-амплитуда; -частота ;e^(it) надо следить что i=+-ia; *)<>a-нерезонансный случай. x=cost+sint =0=p/(aІ-І) x=Asin(at+)+psint/(aІ-І) (10) – общее реш-е (9); если A и соизмеримы то это период ф-я; если A и несоизм (их отн иррац) то это непериод ф-я; если 0<<a то psint/(aІ-І)-амплитуда; если >a то psin(t+)-амплитуда, говорят в этом случае чтоколебания происходят в противофазе. Частота внеш сил не совпадает с собств частотой; **)если =a-резонансный случай. x=(cost+sint)t (!) если част. реш. (9) исп в виде (!) то =-p/2a и =0 а значит общее реш (9) имеет вид x=Asin(at+)-ptcost/2a (11) ptcost/2a –вековой член из-за него происходит явление резонанса. (коля написал что нету ф-лы (12)).

4)Вынужленные колебания линейной системы без трения: dІx/dtІ+2ndx/dt+aІx=psint (13) 0<n<a Общее реш e^(it) i не совпад с корнями хар ур-я. Резонанса нет. x=Mcost+Nsint для опр-я M,N получаем след систему 2-х ур-й: -2nM+(aІ-І)N=p и (aІ-І)M+2nN=0 (14) M=(-2np)/((aІ-І)І+4nІ) N=((aІ-І)p)/((aІ-І)І+nІ) x=(p/((aІ-І)І+4nІІ))(-2ncost+(aІ-І)sint) (15) І(-2ncost+(aІ-І)sint)- частное реш.; x=(p/sqrt((aІ-І)І+4nІІ))sin(t+) (16) част реш (13); если общ то и этому выр-ю нужно добавить Ae^(-nt)sin(bt+) по истеч большого времени это слагемое быстро убывает (колеб опис ур-м (3)) т.е. происх. с той же частотой что колебания возмущ системы , однако ампл и фаза придержиают опр изм-я. Формально резонанса нет. - полярный угол -/2<<0 if a>; q=/2 if a=; -<<0 if a<.



лекция №1.

*соотношение связывающее независимую пер. x, ф-ю y(x) и некот. кол-во ее производных назыв. диф. ур.

*порядком д.у. наз. порядок старших произв. входящих в это д.у.

предположем что в пр-ве пер-х x,y,z задана ф-я F на некотор.области G.

*соотношение связывающее независимую пер. x, ф-ю y(x) и ее первую производную y’(x) назыв. диф. ур. 1-го порядка.

*искомое д.у. явл. ф-я y(x). Если ищем ф-ю одной пер., то ур-е наз. обыкновенным. Если искомой явл. ф-я нескол. пер-х, то д.у. наз. ур-м в частных произв-х (ур-е Лапласа).

*ф-я y=f(x) опред. на некот. интервале наз. решением ур-я если выполняются след. условия:

1.f(x) диф-ма в точке обл. опр. f’(x) не равно оо.

2.x: x,f(x),f’(x) принадлежат области G, на кот.опр-на F(G).

К-во Просмотров: 348
Бесплатно скачать Реферат: Шпора по математическому анализу