Реферат: Шпора по математическому анализу

13. Линейные неоднородные диф ур-я n-го порядка с правой частью квазимногочлена.

1)Квазимногочлены и их свойства

2)Правило нахождения частного решения в нерезонансном случае

3)Правило нахождения частного решения в резонансном случае


1:)Квазимногочлены и их свойства

Рассмотрим ЛОДУ n-го порядка. y(n)+a1y(n-1)+...+any=f(x) (1); aiC i=1,...,n. f(x)-квазимногочлен. Чтобы найти решение (1) н-но решить y(n)+a1y(n-1)+...+any=0 (2). М-но искать по методу Лагранжа: f(x)=e[1]xp1(x)+e[2]xp2(x)+...+e[k]xpk(x) (3) – квазимногочлен; 1,...,kC; p1(x),...,pk(x) – мн-ны с компл коэф. Примером квазимногочленов являются показательные функции: eix=cos(x)+i*sin(x). sin и cos также квазим-ны: cos(x)=(eix+e-ix)/2;sin(x)=(eix-e-ix)/2i. Квазимн-ны м-но складывать, умножать, вычитать, но !не делить! Результат деления будет функцией, но не квазимногочленом. Производная от квазимн-на будет квазимногочленом. Если рассматривать хар корни, соотв (2) и выпис их кратности k1,...,ks; y=e[1]xp1(x)+e[2]xp2(x)+...+e[s]xps(x) (4). Общ реш (2) – квазимн-н. deg(pj(x))=kj.

Опр: Если в (3) 1,...,k попарноразличны, то их число наз-ся порядком квазимн-на.

Теорема: ф-и вида e[j]x, j=1,...,s; r=0,1,...,kj-1 образует фунд сист реш-ий.

Д-во: Пустьу (3), 1,...,n – попарно-различны(k-порядок многочлена). Тогда f(x)0 <=> pj(x)=0, j=1..k (5). Проведём доказательство ММИ:

1)k=1;f(x)=e[1]xp1(x)0

2)Пусть многочлен вида (3)=0. Разделим (3) на e[k]x: e([1]-[k])xp1(x)+e([2]-[k])xp2(x)+...+pk=0. Пусть rk-степень многочлена. Если продифференцировать многочлен rk-раз, то ничего не останется. Pr[k]+1((j=1..k-1)e([j]-[k])xpj(x)+pk(x))=0. Можно примеить формулу смещения: (j=1..k-1)e([j]-[k])xpj(x)*(p+j-k)r[k+1]=0. Получили квазимн-н порядка k-1. e([1]-[k])xg1(x)+...+e([k-1]-[k])xgk-1(x)0; gj(x)pj(x)*(p-j-k)r[k+1]; j=1..k-1 => gj(x)0. Если при p=0 получ 0, то дифференциальный оператор сохраняет степень многочлена. pj(x)0, j=1..k-1;=> (5) – д-но

Тхеоремена доказякана


2:)Правило нахождения частного решения в нерезонансном случае

Пусть L()0. (7). Этот случай называется нерезонансным. Частное решение ур-я (1) запис в след виде: y=exg(x). deg(g)=deg(p) (8). Теория утверждает, что эта система всегда имеет единственное решение => коэффициенты g(x) определяются однозначно.

Д-во: L(p)y=exp(x). Учитывая (8), получаем: L(p){exg(x)}=exp(x). Применим к лев части ф-лу смещения: exL(p+)g(x)=exp(x). L(p+)g(x)=p(x). L()0


3:)Правило нахождения частного решения в резонансном случае.

Мы решаем (1) c правой частью вида (6), но снимая ограничения (7). Этот случай наз-ся резонансным. L()=0 (9). k-кратность , как корня хар ур-я. y=exxkg(x) (10). Deg(g)=Deg(p). (10) частное решение. Теория утверждает, что нахождение g(x) имеет единственное решение.

Д-во: L(p)y=exp(x); L(p){exxkg(x)}=exp(x). Применим ф-лу смещения: exL(p+){xkg(x)}=exp(x); L(p+){xkg(x)}=p(x). Нужно найти g(x), удовл последн ур-ю. Т.к. -корень хар ур-я, то м-но записать в след виде: L(p)=M(p)*(p-)k; - корень, кратности k. M()0. M(p+)pk{xkg(x)}=p(x). N(p)M(p+). N(p)pk{xkg(x)}=p(x). Пусть pk{xkg(x)}=h(x). Получ: N(p)h(x)=p(x). h -  и однозначно находится по p(x). Проверим, что N(0)=M()0. Н-но по h(x) найти g(x). pk{xkg(x)}=h(x). g(x)=(j=0..n)gjxj; h(x)=(j=0..r)hjxj; (j=0..r)gjxj+k=(j=0..r)gj(k+j)...(j+1)xj=(j=0..r)hjxj; gj=hj/(k+j)*...*(j+1); j=0..r.

Утв: M(p)=b0pm+b1pm-1+...+bm; bm0.

Д-во: p(x) – вып-ся: M(p){g(x)}=p(x) (12). Уравнение имеет единственное решение, deg(g)=deg(p). Усл bm0M(0)0; prxr+...=p(x);grxr+...=g(x). M(p){g(x)}=grM(p)xr+...=grbmxr+...=prxr. Т.о. g­=pr/bm.



10. Линейные неодн ДУ n-го порядка с перем коэф.

1)Теорема я и ед-ти решения нач задачи

2)Теорема об общем решении

3)Метод Лагранжа вариации произв пост

4)Ф-я Коши и её св-ва


1:)Теорема я и ед-ти решения нач задачи

y(n)+a1(x)y(n-1)+...+an(x)y=f(x) a<x<b (1) – общий вид

a1(x),...,an(x) – коэф ур-я (непр на (а;в)). f(x) – непр на (а;в) – своб член.

f(x)0(тождественно). y(x0)=y0;y’(x0)=y0’;...;y(n-1)(x0)=y0(n-1) (2) x0(a;b). y0;y0’;...;y0(n-1)-заданные числа. Задача нахождения решения (1) удовл усл (2) наз начальной задачей, а (2) – начальным условием. Условий ровно столько, каков порядок уравнения. Выпишем однородное уравнение, соотв ур-ю (1):y(n)+a1(x)y(n-1)+...+an(x)y=0 (3). Межу (1) и (3) ет простая связь: 1)если y(x) решение (1), а U(x) – решение соотв (3), то их  явл реш-ем (1); 2)если y(x) и z(x) – оба решения (1), тогда y(x)-z(x) – решение (3).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 343
Бесплатно скачать Реферат: Шпора по математическому анализу