Реферат: Шпоры по вышке
26. Поверхности вращения.
Поверхность, образованная вращением некоторой плоской кривой вокруг оси, лежащей в ее плоскости, называется поверхностью вращения. Пусть некоторая кривая L лежит в плоскости Oyz. Уравнение этой кривой запишутся в виде:
Найдем уравнение поверхности, образованной вращением кривой L вокруг оси Oz.
Возьмем на поверхности точку
M (x;y;z). Проведем через точку
М плоскость, перпендикулярную
оси oz, и обозначим точки
пересечения ее с осью oz
и кривой Lсоответственно O1 и N.
Обозначим координаты точки
N (0;y1 ;z1 ). Отрезки O1 Mи O1 N
являются радиусами одной и той же окружности. Поэтому O1 M= O1 N. Но O1 M = (x2 +y2 )0.5 , O1 N=|y1 |.
Следовательно, |y1 |=(x2 +y2 )0.5 или y1 =±(x2 +y2 )0.5 . Кроме того, очевидно, z1 =z.
Следовательно – искомое уравнение поверхности вращения, ему удовлетворяют координаты любой точка М этой поверхности и не удовлетворяет координаты точек, не лежащих на поверхности вращения.
27. Поверхности 2-го порядка. Эллипсоид, Гиперболоид.
Эллипсоид.
Рассмотрим сечение поверхности с плоскостями, параллельными xOy. Уравнения таких плоскостей z=h, где h – любое число. Линия, получаемая в сечении, определяется двумя уравнениями:
Если |h|>c, c>0, то точек пересечения поверхности с плоскостями z=h нет.
Если |h|=c, т.е. h=±c, то . Линия пересечения вырождается в две точки (0;0;с) и (0;0;-с). Плоскости z=c и z=–cкасаются поверхности.
Если |h|<c, то уравнения можно переписать в виде:
Линия пересечения есть эллипс с полуосями.
Эллипсоид – замкнутая овальная поверхность, где a,b,с – полуоси. Если все они различны, то эллипсоид называется трехосным . Если какие-либо две полуоси равны, то тело называется эллипсоид вращения, если a=b=c, то тело называется сферой x2 +y2 +z2 =R2
Однополостный гиперболоид.
Пересекая поверхность плоскостью z=h, получим линию пересечения, уравнения которой имеют вид.