Реферат: Шпоры по вышке
2. Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.
3. Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.
4. Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.
Три вектора называются компланарными, если результат смешанного произведения равен нулю.
16. Линейные преобразования пространства. Матрица линейного преобразования. Связь между координатами образа и прообраза.
Рассмотрим линейное пространство V, в котором каждому элементу x, в силу некоторого закона поставлен элемент этого же пространства.
- прообраз
- образ
Каждому прообразу соответствует единственный образ.
Каждый образ имеет единственный прообраз.
Линейное преобразование пространства, при котором существует взаимнооднозначные соответствия.
Блективное преобразование – называется линейным, если выполняются 2 условия.
1.
2.
Рассмотрим n-мерное линейное пространство
Для того, чтобы задать линейные преобразования в этом пространстве достаточно задать это преобразование для базисных векторов.
Матрица линейного преобразования.
Пусть F – линейное преобразование линейного пространства, переводящая базис в базис . Т.к. - базис, то верны соотношения