Реферат: Шпоры по вышке
Полуоси достигают своего наименьшего значения при h=0, a1 =a, b1 =b. При возрастании |h| полуоси будут увеличиваться.
Если пересекать поверхность плоскостями x=h или y=h, то в сечении получим гиперболы. Найдем линию пересечения поверхности с плоскостью Oyx, уравнение которой x=0. Эта линия пересечения описывается уравнениями:
Поверхность имеет форму бесконечно расширяющейся трубки и называется однополостным гиперболоидом .
Двуполостный гиперболоид.
Если поверхность пересечь плоскостями z=h, то линия пересечение уравнениями
Если |h|<c, то плоскости z=h не пересекаются.
Если |h|=c, то плоскости h=±c касаются данной поверхности соответственно в точках (0;0;с) и (0;0;-с).
Если |h|>c, то уравнения можно переписать в виде:
Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|.
У обеих гипербол действительной осью является ось oz. Метод сечения позволяет изобразить поверхность, состоящую из двух полостей, имеющих форму двух неограниченных чаш. Поверхность называется двуполостным гиперболоидом .
28. Поверхности 2-го порядка. Параболоиды.
Эллиптический.
При пересечении поверхности координатами плоскостями Oxzи Oyzполучается соответственно параболы и . Таким образом, поверхность, определяемая уравнением, имеет вид выпуклой, бесконечно расширяющейся чаши.
Гиперболический.
Рассечем поверхность плоскостями z=h. Получим кривую
которая при всех h≠0 является гиперболой. При h>0 ее действительные оси параллельны оси Ox, при h<0 – параллельные оси Oy. При h=0 линия пересечения распадается на пару пересекающихся прямых:
При пересечении поверхности плоскостями, параллельности плоскости Oxz (y=h), будут получаться параболы, ветви которых направлены вверх.
29. Поверхности 2-го порядка. Конусы и цилиндры.
Конус.
Поверхность, образованная прямыми линиями, проходящими через данную точку Р и пересекающими данную плоскую линию L(не проходящую через Р) называется конической поверхностью или конусом. При этом линия Lназывается направляющей конуса, точка Р – ее вершиной , а прямая, описывающая поверхность, называется образующей .
- уравнение конуса