Реферат: Способы решения систем линейных уравнений
– очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. Поэтому первая глава моего реферата посвящена теме матриц и определителей. В ней я рассматривала различные действия над матрицами, свойства определителей, метод Гаусса вычисления ранга матрицы, а так же некоторые другие теоретические вопросы. Во второй главе непосредственно рассматриваются системы линейных уравнений и некоторые методы их решения: правило Крамера, метод Гаусса, а так же теорема Кронекера – Капелли. И в той и в другой главах приведены примеры, которые составляют практическую часть моего реферата.
Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы. Давайте рассмотрим некоторые примеры важнейших моментов этой работы.
Пусть дана система n линейных уравнений с n неизвестными:
a11x1 + a12x2 + …+ a1n xn = b1 ;
a21x1 + a22x2 + …+ a2n xn = b2 ;
……………………………………
an1x1 + an2x2 + …+ annxn = bn ;
a). Если , то система (1) имеет единственное решение,
которое может быть найдено по формулам Крамера: x1=, где
определитель n-го порядка i ( i=1,2,...,n) получается из определителя системы путем замены i-го столбца свободными членами b1 , b2 ,..., bn.
б). Если , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет. Например:
решить систему уравнений
.
Вычислим определитель системы:
Так как определитель не равен нулю, система уравнений может быть решена по формулам Крамера. Найдем определители ∆x , ∆y:
.
Практическое значение правила Крамера для решения системы n линейных уравнений с п неизвестными невелико, так как при его применении приходится вычислять п +1 определителей n-го порядка: , x1, x2, …,xn. Более удобным является так называемый метод Гаусса. Он применим и в более общем случае системы линейных уравнений, т. е. когда число уравнений не совпадает с числом неизвестных.
Итак, пусть дана система, содержащая m линейных уравнений с п неизвестными:
а11х1 + а12х2 + …+ а1nхn = b1;
а21х1 + а22х2 + …+ а2nхn = b2;
. ……………………………………
аm1х1 + аm2х2 + …+ аmnхn = bm
Метод Гаусса решения системы (19) заключается в последовательном исключении переменных. Например:
Решить методом Гаусса систему уравнений
x1 – 2x2 + x3 + x4 = –1;
3x1 + 2x2 – 3x3 – 4x4 = 2;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--