Реферат: Способы решения систем линейных уравнений
Операция нахождения произведения двух матриц называется умножением матриц. Умножение матриц некоммутативно, т.е.
АВ ≠ ВА. Убедимся в примере матриц (1). Перемножив их в обратном порядке, получим:
39 54 69
ВА = 49 68 87 (3)
59 82 105
Сравнив правые части выражений (2) и (3), убедимся, что АВ ≠ ВА.
Матрицы А и В, для которых АВ = ВА, называются перестановочными. Например:
1 2 -3 2
А = ; В = перестановочны, т.к.
-2 0 -2 -4
-7 -6
АВ = ВА=
-
-4
-10-
Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:
-
А(ВС) = (АВ)С; (ассоциативность)
-
λ(АВ) = (λА)В = А(λВ);
-
А(В + С) = АВ + АС. (дистрибутивность)
Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ - произвольное число.
Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.
1.3.Обратная матрица.
Пусть дана квадратная матрица
a11 … a1n
A = …………… ,
am1 … amn
= A – её определитель.
Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А, а сама матрица А – обратимой. Обратная матрица для А обозначается А-1.
Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.
Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х1. Тогда должны выполняться следующие условия: ХА = Е, АХ1 = Е. Умножив второе равенство на матрицу Х, получим ХАХ1 = ХЕ =Х. Но, т.к. ХА = Е, то предыдущее равенство можно записать в виде ЕХ1 = Х или Х = Х1.