Реферат: Способы решения систем линейных уравнений

а все миноры третьего порядка равны нулю.

Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы, например

5 –1 7

2 1 1 = –35.

1 –3 0

Согласно критерию Кронекера – Капелли система несовместна, т.е. не имеет решений.

В процессе работы я узнала много нового: какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, а так же многие другие теоретические вопросы и провела практические исследования, приводя примеры в тексте.

Тема решения систем линейных уравнений предлагается на вступительных экзаменах в различные математические вузы, на выпускных экзаменах, поэтому умение их решать очень важно.

Реферат может использоваться как учащимися, так и преподавателями в процессе факультативных занятий, как пособие для самостоятельного изучения по теме „Способы решения систем линейных уравнений ”, а также в качестве дополнительного материала.


МОУ Гимназия № 11


Способы решения систем линейных уравнений


Анжеро-Судженск

2004г.

МОУ Гимназия № 11


Способы решения систем линейных уравнений

Реферат по математике


Выполнила:

Ученица 92 класса

Бойко Юлия

Научный

Руководитель:

Клокова Татьяна

Васильевна.


Анжеро-Судженск

2004г.

Содержание:


Введение. 2

Глава I. Матрицы и действия над ними. 5

1.1. Основные понятия. –

1.2. Действия над матрицами. 8

К-во Просмотров: 387
Бесплатно скачать Реферат: Способы решения систем линейных уравнений