Реферат: Теория поля и элементы векторного анализа
1. Для того чтобы поле было соленоидальным, необходимо и достаточно, чтобы во всей рассматриваемой области выполнялось равенство div = 0, т.е. его поток через всякую замкнутую поверхность, погруженную в поле, = 0. Следовательно, соленоидальные поля лишены источников и стоков.
Замечание : Это свойство можно положить в определение.
Доказательство основывается на том, что
=
Следствие = 0
как следствие этого свойства получаем, что поток вектора соленоидального поля через две одинаково ориентированные поверхности S 1 и S 2 , опирающиеся на один и тот же контур L , одинаков.
2. Поток соленоидального поля через два любых сечения векторной трубки одинаков.
Доказательство:
Отрезок векторной трубки, ограниченный сечениями S 1 , S 2 и S d , можно рассматривать как замкнутую поверхность, помещенную в соленоидальное поле. Поэтому
, но , т.к. .
Учитывая, что и направлены в противоположные стороны, и вводя (–), получим
отсюда следует
3. В соленоидальном поле векторные линии либо замкнуты, либо уходят к границе поля. Так как , то векторные линии поля не могут начинаться или кончаться в области поля, иначе в…? будет существовать сток или исток, что противоречит свойству 1.
4. Сумма соленоидальных векторных полей есть соленоидальное поле.
Потенциальное несжимаемое поле. Гармоническое поле
, отсюда следует =
Это поле часто называют гармоническим или полем Лапласа.
Резюме
По заданному полю мы всегда можем найти поля u и . Справедливо и обратное утверждение: по известным u и всегда можно найти искомое поле .
Пусть поле известно, тогда потенциалы u и находятся из уравнений:
Если u и известны, тогда векторное поле определяется из уравнений:
Эти уравнения всегда разрешимы.
Теорема о разложимости произвольного векторного поля
Произвольное векторное поле всегда может быть представлено в виде суммы потенциального и соленоидального полей.
Задано
где ;