Реферат: Теория поля и элементы векторного анализа

1. Для того чтобы поле было соленоидальным, необходимо и достаточно, чтобы во всей рассматриваемой области выполнялось равенство div = 0, т.е. его поток через всякую замкнутую поверхность, погруженную в поле, = 0. Следовательно, соленоидальные поля лишены источников и стоков.

Замечание : Это свойство можно положить в определение.

Доказательство основывается на том, что

=

Следствие = 0

как следствие этого свойства получаем, что поток вектора соленоидального поля через две одинаково ориентированные поверхности S 1 и S 2 , опирающиеся на один и тот же контур L , одинаков.

2. Поток соленоидального поля через два любых сечения векторной трубки одинаков.

Доказательство:

Отрезок векторной трубки, ограниченный сечениями S 1 , S 2 и S d , можно рассматривать как замкнутую поверхность, помещенную в соленоидальное поле. Поэтому

, но , т.к. .

Учитывая, что и направлены в противоположные стороны, и вводя (–), получим

отсюда следует

3. В соленоидальном поле векторные линии либо замкнуты, либо уходят к границе поля. Так как , то векторные линии поля не могут начинаться или кончаться в области поля, иначе в…? будет существовать сток или исток, что противоречит свойству 1.

4. Сумма соленоидальных векторных полей есть соленоидальное поле.

Потенциальное несжимаемое поле. Гармоническое поле

, отсюда следует =

Это поле часто называют гармоническим или полем Лапласа.

Резюме

По заданному полю мы всегда можем найти поля u и . Справедливо и обратное утверждение: по известным u и всегда можно найти искомое поле .

Пусть поле известно, тогда потенциалы u и находятся из уравнений:

Если u и известны, тогда векторное поле определяется из уравнений:

Эти уравнения всегда разрешимы.

Теорема о разложимости произвольного векторного поля

Произвольное векторное поле всегда может быть представлено в виде суммы потенциального и соленоидального полей.

Задано


где ;

К-во Просмотров: 409
Бесплатно скачать Реферат: Теория поля и элементы векторного анализа