Реферат: Теория поля и элементы векторного анализа

и, следовательно

Потенциалы и u должны удовлетворять следующему соотношению:

1.

но дивергенция соленоидального поля должна быть равна 0.

отсюда

2.

(**)

Для определения и u получили два дифференциальных уравнения, которые всегда имеют решения и, следовательно, произвольное поле всегда можно представить в виде суммы потенциального и соленоидального полей.

Нахождение векторного поля по его характеристикам

Для нахождения и u нужно решить систему четырех уравнений

Пусть известны характеристики векторного поля

(1)

или в интегральной форме:

Будем искать распределение поля . Для этого разложим его на потенциальное и вихревое .

= + (2)

Подставляя (2) в уравнение (1), получим систему уравнений для отыскания :

(3)

Потенциальное поле удобно представить через градиент

(4)

т.к. в этом случае приходится находить всего лишь одну скалярную величину вместо трех. Подставляем (4) в первое уравнение (3), получаем уравнение

– уравнение Пуассона (5)


Его решение известно и имеет следующий вид:

. (6)

Соленоидальное (вихревое) поле будем искать через векторный потенциал

(7)

Тогда для получаем следующее уравнение:

К-во Просмотров: 408
Бесплатно скачать Реферат: Теория поля и элементы векторного анализа