Реферат: Теория устойчивости систем
Учитывая, что J-1=T-1A-1T, , получаем:
.
Исследуем устойчивость тривиального решения системы уравнений (12), приведенной к канонической форме. Для исследования построим функцию Ляпунову специального вида, предложенную А. И. Лурье, с помощью этой функции найдем условия, накладываемые на параметры регулятора, при выполнении которых тривиальное решение систем (12) и (11) асимптотически устойчиво.
Пусть все корни характеристического уравнения det(A–lE)=0 простые и лежат в левой полуплоскости, то есть Reli<0, i=1,2,…,n. Функцию Ляпунова будем искать в виде
.
Чтобы была положительно определенной, требуется, чтобы первое слагаемое представляло собой положительно определенную квадратичную форму, тогда первое слагаемое будет строго положительным для всех
, удовлетворяющих условию
. Второе слагаемое в силу условий, накладываемых на функцию f(e), будет строго положительной для всех e, удовлетворяющих условию e¹0. Таким образом, функция
будет определенно положительной, если квадратичная форма
положительно определена.
Составим полную производную функции по времени t в силу (12):
Так как B – симметрична, то BT=B, получим
.
Заменим C=–(JTB+BJ). Матрица С симметрична, поэтому
Видно, что является квадратичной формой относительно z1,…,zn, f(e). Если характеристические числа матрицы A удовлетворяют условию lj+li¹0, то по заданной симметричной матрице C однозначно определяется матрица B:
. (13)
Пусть матрица A устойчива, то есть ее характеристические числа лежат в левой полуплоскости. Существует теорема, которая утверждает, что если С – матрица некоторой положительно определенной квадратичной формы, то определенная по формуле (13) матрица B также является матрицей положительно определенной квадратичной формы.
Получим условия, накладываемые на параметры САР для того, чтобы функция была функцией Ляпунова. Возьмем некоторую матрицу C положительно определенной квадратичной формы, тогда матрица B тоже будет матрицей некоторой положительно определенной квадратичной формы. Для того, чтобы функция
была функцией Ляпунова, требуется, чтобы ее производная
в силу системы (12) была отрицательно определенной функцией. Для положительной определенности функции –
требуется, согласно критерию Сильвестра, положительность всех главных диагональных миноров матрицы квадратичной формы. Так как матрица C положительно определенная, то первые n неравенств критерия выполняются, и остается одно:
Это условие является необходимым и достаточным условием отрицательной определенности производной . Перепишем его в виде
. (14)
Согласно второй теореме об асимптотической устойчивости состояний равновесия zk=0, e=0 системы (12) будет асимптотически устойчиво. При выполнении неравенства (см. выше), получим, что
. (15)
Это будет означать асимптотическую устойчивость тривиального решения xk=0, y=0 системы уравнений (11). Таким образом, неравенства (14) и (15) являются достаточным условием асимптотической устойчивости состояния равновесия системы (11).
Когда характеристическое ур?