Реферат: Уравнения с параметрами

F ( x (α,β, ..., γ), y( α,β, ..., γ),…, z (α,β, ..., γ ) ≡0.

При всякой допустимой системе численных значений параметров α = α0 ,β=β0 , ..., γ= γ0 соответствующие значения функций (Х ) образуют решение уравнения

F(х, у, ..., z; α00 , ..., γ0 ) = 0

§2. Основные виды уравнений с параметрами .

Линейные и квадратные уравнения.

Линейное уравнение, записанное в общем виде, можно рассматривать как уравнение с параметрами : ах = b , где х – неизвестное, а, b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра а является значение а = 0.

1. Если а ≠ 0 , то при любой паре параметров а и b оно имеет единственное решение х = .

2. Если а = 0, то уравнение принимает вид: 0 х = b . В этом случае значение b = 0 является особым значением параметра b .

2.1. При b ≠ 0 уравнение решений не имеет.

2.2. При b = 0 уравнение примет вид : 0 х = 0. Решением данного уравнения является любое действительное число.

П р и м е р . Решим уравнение

2а(а — 2) х=а — 2. (2)

Р е ш е н и е. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются а=0 и а=2. При этих значениях а невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0, а≠2 это деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества

A1 ={0}, А2 ={2} и Аз= {а ≠0, а ≠2}

и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра:

1) а= 0 ; 2) а= 2 ; 3) а≠0, а≠2

Рассмотрим эти случаи.

1) При а= 0уравнение (2) принимает вид 0 х = — 2. Это уравнение не имеет корней.

2) При а= 2уравнение (2) принимает вид 0 х =0. Корнем этого уравнения является любое действительное число.

3) При а≠0, а≠2 из уравнения (2) получаем, х=

откуда х= .

0 т в е т: 1) если а= 0, то корней нет; 2) если а= 2, то х — любое действительное число; 3) если а ≠0, а ≠2 , то х =

П р и ме р . Решим уравнение

(а — 1) х 2 +2 (2а +1) х +(4а +3) =0; (3)

Р е ш е н и е. В данном случае контрольным является значение a =1. Дело в том, что при a =1 уравнение (3) является линейным, а при а≠ 1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а =l; 2) а ≠1.

Рассмотрим эти случаи.

1) При a =1 уравнение (3) примет вид бх +7=0. Из этого

уравнения находим х= - .

2) Из множества значений параметра а≠ 1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.

Дело в том, что если дискриминант D=0 при а=ао , то при переходе значения D через точку ао дискриминант может изменить знак (например, при а<ао D< 0, а при а>ао D>0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а<ао корней нет, так как D< 0, а при а>ао D>0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.

К-во Просмотров: 571
Бесплатно скачать Реферат: Уравнения с параметрами