Реферат: Уравнения с параметрами
=(2а+ l)2 — (а — 1) (4а+3). После упрощений получаем = 5а+4.
Из уравнения =0 находим а= — второе контрольное значение параметра а. При
этом если а < , то D <0; если a ≥ , , то D≥0.
a ≠ 1
Таким образом, осталось решить уравнение (3) в случае, когда а < и в случае, когда { a ≥ , a ≠ 1 }.
Если а < , то уравнение (3) не имеет действительных корней; если же
{ a ≥ , a ≠ 1 }, то находим
Ответ: 1) если а < , то корней нет ; 2) если а = 1, то х = - ;
3) a ≥ , то
a ≠ 1
Дробно-рациональные уравнения с параметрами, сводящиеся к линейным.
Процесс решения дробных уравнений протекает по обычной схеме: дробное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, т. е. числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы исключить посторонние корни, требуется находить значение параметра, обращающее общий знаменатель в нуль, т. е. решать соответствующие уравнения относительно параметра.
П р и м ер . Решим уравнение
(4)
Р е ш е н и е. Значение а=0 является контрольным. При a =0 уравнение (4) теряет смысл и, следовательно, не имеет корней. Если а≠0, то после преобразований уравнение (4) примет вид:
х 2 +2 (1 — а ) х +а 2 — 2а — 3= 0. (5)
Найдем дискриминант уравнения (5)
= (1 — a )2 — (a 2 — 2а — 3) = 4.
Находим корни уравнения (5):
х 1 =а + 1, х 2 = а — 3.
При переходе от уравнения (4) к уравнению (5) расширилась
область определения уравнения (4), что могло привести к появлению посторонних корней. Поэтому необходима проверка.
П р о в е р к а. Исключим из найденных значений х такие, при которых х 1 +1=0, х 1 +2=0, х 2 +1=0, х 2 +2=0.
Если х 1 +1=0, т. е. (а +1)+1=0, то а= — 2. Таким образом, при а= — 2 х 1 — посторонний корень уравнения (4).
Если х 1 +2=0, т. е. (а +1)+2=0, то а= — 3. Таким образом, при а= — 3 x 1 — посторонний корень уравнения (4).
Если х 2 +1 =0, т. е. (а — 3)+1=0, то а= 2. Таким образом, при а= 2 х 2 — посторонний корень уравнения (4)'.
Если х 2 +2=0, т. е. (а — 3)+2=0, то а =1. Таким образом, при а= 1 х 2 — посторонний корень уравнения (4).
Для облегчения выписывания ответа сведем полученные результаты на рисунке .
только х 2 только х 2 корней нет только х 1 только х 1
х 1,2 х 1,2 х 1,2 х 1,2 х 1,2 х 1,2