Шпаргалка: Интегралы, дифуры, матрицы
Означення: називається невластивим інтегралом від розрізненої (необмеженої) функції f(x).
Якщо ця границя існує – інтеграл збіжний, якщо ні – розбіжний.
Для обчислення таких невластивих інтегралів використовують такі формули:
1) x = a – точка розриву f(x),
2) x = b – точка розриву f(x),
3) x=cÎ(a;b) –точка розриву f(x),
Зауваження: до невластивих інтегралів, які мають точку розриву, що є внутрішньою для [a;b] не можна застосовувати формулу Ньютона-Лейбніца.
3. Поняття подвійного інтеграла
Означення: Якщо існує та не залежить ні від способу розбиття області D на частини, ні від вибору точок Mi , то ця границя називається подвійним інтегралом від функції трьох змінних u=f(x,y,z) в тривимірній області D, який позначається так:
За такою схемою можна побудувати n-кратний інтеграл від функції n змінних u=f(M), M(x1 , x2 ,…, xn ,) у відповідній області D.
Властивості подвійного інтеграла:
1.
2.
3. якщо D=D1 ÈD2 D1 ÇD2 = Æ.
4. S – площа області D.
4. Обчислення подвійного інтеграла зведенням до повторного інтеграла
Означення: Область D називається правильною по відношенню до деякої осі, якщо будь-яка пряма паралельна цій осі перетинає межу області не більше ніж у двох точках.
5. Заміна змінних інтегрування в подвійному інтегралі
Теорема: Якщо ф-ія f(x;y) неперервна в області D, а ф-ії x=j(u;v), y=y(u;v) диференційовні і встановлюють взаємно-однозначну в системі Ouv, і при цьому їхній якобіан зберігає незмінним свій знак в області D, то має місце формула:
6. Поняття криволінійних інтегралів першого та другого роду
Криволінійний інтеграл першого роду
Означення:
називається криволінійним інтегралом першого роду, якщо ця границя існує і не залежить ні від способу розбиття дуги L на елементарні дуги, ні від вибору на них точок Mi .
Враховуючи формулу обчислення дуги кривої, цей інтеграл можна обчислити за такою формулою:
В тривимірному випадку для ф-ії u=f(x;y;z), коли дуга кривої L задана параметричними рівняннями x=x(t), y=y(t), z=z(t), a£ t £b. Формула має вигляд: