Статья: Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками

Пусть имеет место случай (1) и функции . Решение задачи (6), (7) в этом случае имеет вид:

, (8)

где .

Дифференцируя равенство (8) и делая несложные преобразования, получаем:

(9)

где ,

, ,

,

, .

Переходя к пределу в уравнении (1) при , получаем функциональное соотношение между и , принесенное из области , на линию :

. (10)

В силу граничных условий (2) и равенства (9) получим нелокальную задачу для нагруженного неоднородного интегро-дифференциального уравнения третьего порядка с переменными коэффициентами:

, (11)

, (12)

где

.

В начале положим, что , т.е.

, , т.е.

.

В зависимости от значений корней характеристического уравнения

, (13)

соответствующего однородному уравнению (11) (), будем исследовать разрешимость задачи (11), (12).

Введем обозначение . Логически возможны три различных случая: 1) S>0, 2) S=0, 3) S<0.

Известно, что [2]: 1) если S>0, то уравнение (13) имеет только один действительный корень, а два остальных корня будут сопряженными чисто комплексными числами; 2) если S=0, то все три корня уравнения (13) действительны, причем два из них равны; 3) если S<0, то все три корня уравнения (13) действительны, причем все они различны.

Пусть S=0, т.е. .

К-во Просмотров: 356
Бесплатно скачать Статья: Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками