Статья: Об одной общей краевой задаче со смещением для нагруженного уравнения третьего порядка с кратными характеристиками
где .
Пусть . Методом вариации постоянных находим общее решение неоднородного уравнения (34) в виде:
, (35)
где ,
.
Удовлетворяя (35) условиям (12), получаем:
,
,
где
,
,
, причем выполняется условие
, т.е. .
Равенство (35) перепишем в виде:
, (36)
где , .
Из (36) при , имеем
,
если выполняется условие , т.е.
.
Пусть имеет место случай 3), причем , . Тогда уравнение (6) принимает вид [1]:
. (37)
Полагая в равенстве (37) и, учитывая условия , получим:
.
Следовательно, для имеем представление
, (38)
где .