Учебное пособие: Численные методы

Nn (g)= y0 +∆y0 g+…+ ∆n y0 /n!g(g-1)(g-2)(g-n+1) (8.4)

Полином Ньютона в силу единственности существования интерполяционного полинома Лагранжа является одной из форм записи полинома Лагранжа, поэтому для полинома (8.3) справедливо, что формула остаточного члена полинома Лагранжа

Для вычисления функции в точках находящихся в середине сетки узлов интерполяции либо в ее конце, т. е близкие к xn , применяют два подхода

1. строят формулы для вычисления функции в точках х, близких к середине сетки интерполяции

2. формулы для точек х, близких к хn (упорядочивание узлов интерполяции).

Соответственно получаются формулы Стирлинга , Бесселя, Гаусса, и 2-ой интерполяционный многочлен Ньютона .

Второй путь: в качестве узла х0 для заданной точки х берут тот узел, который наиболее близок к х, узел х1 выбирают как самый близкий из оставшихся узлов к х.

Т.е последовательность упорядочившаяся по возрастанию.

Для вычисления значения функции в точке х используется 1-ый интерполяционный многочлен Ньютона.


х0 х1 х2 х3 х4 х5 х6

Преобразуем узлы:

х0 ′=x3;

x1 ′=x4 ;

x2 ′=x2 ;

x3 ′=x5 ;


Разделенные разности

Пусть функция ¦(c),задана на системе неравно отстоящих узлов.

Разделенной разностью 1-го порядка назовем выражение:

Разделенной разностью 2-го порядка:

Разделенной разностью k-го порядка:

(8.6)

|x-x0 |,

Свойства разделенной разности:

- на сетке равноотстоящих узлов разделенной разности совпадают конечными разностями

- разделенные разности понижают степень многочлена

- разделенные разности n-го порядка постоянны и равны

Интерполяционная формула Ньютона для не равноотстоящих узлов

Пусть функция ¦(c), задана на сетке не равноотстоящих узлов xi , .Запишем следующие разделенные разности:

Выполним такие действия n-1 раз, получим:

К-во Просмотров: 379
Бесплатно скачать Учебное пособие: Численные методы