Учебное пособие: Численные методы
МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ
СНУ
Пусть дана система вида:
(5.1)
f'(x)= - производная
Частная производная - вектор (все значения).
МЕТОД НЬЮТОНА
Дана система вида (5.1), где fi один раз непрерывно дифиринцируемые функции, т.е. существуют все частные первые производные этих функций.
Строим последовательность приближений сходящуюся к точному решению системы .
Пусть - некоторое начальное приближение к решению, а - катое приближение к решению. Построим зависимость, позволяющую на основании построить .
Точное приближение
ξ-корень обращает уравнение в верное равенство(тождество).
(5.2)
Разложим функции fi из системы (5.2) в ряд Тейлора в окрестности точки хк до линейных составляющих.
(5.3)
Система (5.3) представляет собой систему линейных алгебраических уравнений для поиска компонента вектора поправки hk .
Перепишем систему (5.3) в виде:
(5.4)
Сокращаем запись системы (5.4) : (5.5)
Решим систему (5.5) методом обратной матрицы. Определитель Якобиана в точке хк не равен 0.
Получили связь последующего приближения с предыдущим.
(5.6)
условие окончания вычислений. (5.7)
- расстояние между векторами (метрика).
МЕТОД ИТЕРАЦИЙ
--> ЧИТАТЬ ПОЛНОСТЬЮ <--