Учебное пособие: Матрицы и определители

· (·

Пример .

Имеем матрицы , , ;

тогда Аּ(ВּС) = (·

(АּВ)ּС=

===

==.

Таким образом, мы на примере показали, что Аּ(ВּС) = (АּВ)ּС.

6 ) дистрибутивность относительно сложения:

(А+В)∙С = АС + ВС, А∙(В + С)=АВ + АС.

7) (А∙В)= В∙А.

Пример.

=, =,

, =.

Тогда АВ ===

=(А∙В )= =

В А = = ==.

Таким образом, (А∙В )= В А .

8 ) λ(АּВ) = (λА)ּ В = Аּ (λВ), λ,R.

Рассмотрим типовые примеры на выполнение действий над матрицами, то есть требуется найти сумму, разность, произведение (если они существуют) двух матриц А и В.

Пример 1 .

, .

Решение.

1) + = = =;

2)===;

3) произведение не существует, так как матрицы А и В несогласованы, впрочем, не существует и произведения по той же причине.

Пример 2 .

=, =.

К-во Просмотров: 469
Бесплатно скачать Учебное пособие: Матрицы и определители