Учебное пособие: Моделювання економіки
,
та трудових ресурсів основними фондами
.
Ці норми показують, як при незмінній величині продукції можна змінити співвідношення між факторами.
За значеннями a та α заданого варіанту побудувати виробничу функцію Кобба-Дугласа для першої галузі та визначити основні характеристики:
Доказати однорідність першого степеня виробничої функції Кобба-Дугласа.
Для другої галузі необхідно розглянути лінійну виробничу функцію
C2 = b1 K2 + b2 L2 ,
b1 = 10 i, b2 =і ,
де і - номер заданого варіанту. Дослідити цю функцію, для цього обчислити характеристики
, , , , .
Доказати однорідність першого степеня лінійної виробничої функції.
4.3 Дослідження моделі "витрати-випуск" Леонтьєва
В моделі Леонтьєва діють підсистема виробництва продукції F та блок розподілу RX , змінні X,Y,W (рис. 4.1).
Якщо позначити через Xi - валову продукцію і -ї галузі, Yi - кінцеву продукцію і -ї галузі, W i – проміжну продукцію і -ї галузі, то можна записати,
Xi -Wi =Yі, .
Тутn - кількість галузей. В цій моделі діє припущення, що в кожній галузі виробництво здійснюється одним технологічним способом або галузі випускають однорідну продукцію. Нехай проміжна продукція і -ї галузі дорівнює
,
де Xj - валова продукція j -ї галузі, , Аij - кількість продукції і-ї галузі , яка витрачається на виробництво одиниці продукції j- ї галузі.
Модель Леонтьєва характеризується виробничою матрицею А
A=(Aij ), ; .
Ця матриця також називається матрицею коефіцієнтів прямих матеріальних витрат.
В матрично-векторній формі модель має вигляд
(I-A)=,
де I – одинична матриця розміром ( n×n) ,
- вектор валової продукції (вектор випуску),
- вектор кінцевої продукції.
Вектор валової продукції можна знайти за формулою