Учебное пособие: Моделювання економіки
A'≤ ,
≥0.
Зобразимо цю задачу у розгорнутій формі
Обмеження в розгорнутій формі мають такий вигляд
Для розв'язання задачі використати графічний метод. Побудувати координатну площину Z1 , Z2 . Використовуючи обмеження, побудувати випуклий многокутник. Далі знайти перетин цільової функції з тією вершиною, де значення цільової функції найбільше. Координати вершини дають необхідні інтенсивності. Знайдені інтенсивності підставляють у цільову функцію для визначення максимальної вартості.
4.6 Дослідження моделі Солоу
Стан економіки в моделі Солоу задається змінними:
Y - кінцева продукція;
L - трудові ресурси;
K - основні виробничі фонди або виробничий капітал;
І – інвестиції;
С – продукція невиробничого споживання.
Всі змінні взаємопов'язані (рис.4.1)
Назвемо нормою накопичення ρ долю кінцевої продукції, яка використовується в інвестиціях. Тоді
I=ρY,
C=(1-ρ)Y,
0<ρ<1.
Інвестиції використовуються для відновлення фондів, які вибувають, та на їх приріст. Приймемо, що фонди вибувають із постійним коефіцієнтом вибування μ, 0<μ<1. .
Також зробимо припущення, що інвестиції у тому ж році повністю витрачаються на приріст ОВФ та на амортизацію. В дискретному варіанті цей зв'язок має вигляд
IΔt=ΔK+DΔt,
де Δt - приріст часу, ΔK - приріст капіталу, D - амортизаційні відрахування.
Перепишемо останній вираз у формі
ΔK=IΔt-DΔt,
ΔK=Δt(I-D),
Тут амортизаційні відрахування дорівнюють D=μK .
У випадку неперервного часу аналогом останнього рівняння є