Учебное пособие: Основы теории вероятности
Вероятностью Р(А) события А называется отношение числа m результатов (исходов) эксперимента, благоприятствующих появлению события А, к числу n всех равновозможных результатов эксперимента:
(2.1)
При этом .
Например, вероятность выпадения числа при одном бросании правильной монеты равна 1/2.
Задачи
Используя формулы и результаты решения задач раздела 1, решим задачи на вычисление вероятности события (по классическому определению).
Задача №10. В урне 3 синих, 8 красных и 9 белых шаров, не различимых на ощупь. Шары тщательно перемешаны. Наудачу достают 1 шар. Найти варианты событий: извлечённый шар красный (событие А), синий (событие B), белый (событие С).
Решение. Всего исходов эксперимента, состоящего в извлечении одного шара, 20=3+8+9, т.е. в формуле (2.1), n=20. Событию А благоприятствует 8 исходов, т.е. mА =8, аналогично mВ =3, mС =9.
По формуле (2.1) имеем:
Примечание. Если сложить полученные вероятности, то получим 1, т.е. Р(А) + Р(В) + Р(С) = 1, что говорит о том, что А, В и С составляют полную группу событий (см. раздел 3).
Задача №11. В расписании 3 лекции по разным предметам. Всего на курсе изучается 10 предметов. Какова вероятность того, что студент, не знакомый с расписанием, угадает его, если все варианты составления расписания на день равновозможные.
Решение. Всего комбинаций из 3-х предметов, выбранных из 10 и отличающихся друг от друга хоть одним предметом или порядком их следования, т.е. размещений из десяти элементов по три, можно получить:
.
Нам нужна только одна комбинация вероятность угадать расписание:
.
Задача №12. На 8-ми одинаковых карточках написаны 2, 4, 6, 7, 8, 11, 12, 13. Найти вероятность того, что образованная из 2-х чисел дробь сократима.
Решение. Всех исходов столько, сколько есть вариантов выбора двух карточек из 8 одинакового формата Þ. Из них только карточек благоприятствуют событию А, т.к. только 5 чисел 2, 4, 6, 8, 12 сократимы Þ.
.
Задача №13. Из 60 экзаменационных вопросов студент подготовил 50. Найти вероятность того, что вытянутый билет из 2 вопросов будет состоять из подготовленных вопросов.
Решение.
Задача №14. Из 30 карточек с буквами русского алфавита наудачу выбирают 4 карточки. Чему равна вероятность того, что эти 4 карточки в порядке выхода составят слово "небо"?
Решение.
15.
Задача №15. На полке расставлено наудачу 10 книг. Определить вероятность того, что 3 определённые книги окажутся рядом.
Решение.
.
Пояснение. При вычислении m три указанные книги принимаем за одну.