Учебное пособие: Теория и методика обучения математике
Понятие в школьном курсе математики представляется по группам:
понятие аналогии, которое является житейским представлением и включает донаучные понятия.
Понятие дается без определения.
Понятие дается через определения.
Понятие дается более расплывчатым, а затем более конкретизируется
Д/З. «Лабораторная работа» Лященко
Математические суждения.
виды математических суждений
логическая структура, теоремы. Виды теорем.
свойства и признак.
Суждением называется такая форма мышления, которая устанавливает связи между понятиями между объектами, охватываемые этими понятиями.
Суждения, правильно отображающие эти объективно существующие зависимости между вещами называется истинными, в противном случае ложные. Суждения имеют свою языковую оболочку в предложениях. Однако не всякое предложение является суждением, характерные признакам суждения является обязательное наличие истинности или ложности, выражающем его предложение.
Обычно математические суждение формулируется в виде математических предложений.
К математическим предложениям относятся: теоремы и аксиомы. Некоторые определения тоже относят к математическим предложениям.
К математическим предложениям относят уравнение неравенство, тождество и др.
Для выражения тех или иных научных суждений и для выражения логической структуры операции над ними используется язык математической логики, где используется термин высказывания близкий к термину суждений. Над высказываниями используются логические операции конъюнкция, дизъюнкция, и т. д..
Основными видами математических суждений являются: аксиомы, постулаты, теоремы.
Аксиома (от греческого то, что приемлема) - предложение, принимаемое без доказательства его истинность допускается.
В аксиомах высказываются утверждения о свойствах основных неопределяемых понятиях некоторые теории к системе аксиом предлагаются требования независимости, непротиворечивости, полноты.
Постулат (от лат. требование) – это предложение в котором выражаются некоторое требование (условие) к которому должно удовлетворять некоторое понятие или некоторого отношения между понятиями.
Теорема (от греч. рассматриваю, зрелище) – математическое предположение, истинность которого устанавливается по средствам доказательства (рассуждения).
2.В любой теореме можно выделить разъяснительную часть (Р), условие (А), заключение (В).
Пример: В теореме «если две прямые // 3-й, то они // между собой».
Р: три прямые
А: 2 // 3-й
В: 3 прямые // между собой
Любую теорему на языке логики можно записать так Р/А В или АВ.
Теорема имеющая одно условие называется простой.
Если имеется несколько условий, то называется теорема сложной.