Учебное пособие: Теория и методика обучения математике

Понятие в школьном курсе математики представляется по группам:

понятие аналогии, которое является житейским представлением и включает донаучные понятия.

Понятие дается без определения.

Понятие дается через определения.

Понятие дается более расплывчатым, а затем более конкретизируется

Д/З. «Лабораторная работа» Лященко

Математические суждения.

виды математических суждений

логическая структура, теоремы. Виды теорем.

свойства и признак.

Суждением называется такая форма мышления, которая устанавливает связи между понятиями между объектами, охватываемые этими понятиями.

Суждения, правильно отображающие эти объективно существующие зависимости между вещами называется истинными, в противном случае ложные. Суждения имеют свою языковую оболочку в предложениях. Однако не всякое предложение является суждением, характерные признакам суждения является обязательное наличие истинности или ложности, выражающем его предложение.

Обычно математические суждение формулируется в виде математических предложений.

К математическим предложениям относятся: теоремы и аксиомы. Некоторые определения тоже относят к математическим предложениям.

К математическим предложениям относят уравнение неравенство, тождество и др.

Для выражения тех или иных научных суждений и для выражения логической структуры операции над ними используется язык математической логики, где используется термин высказывания близкий к термину суждений. Над высказываниями используются логические операции конъюнкция, дизъюнкция, и т. д..

Основными видами математических суждений являются: аксиомы, постулаты, теоремы.

Аксиома (от греческого то, что приемлема) - предложение, принимаемое без доказательства его истинность допускается.

В аксиомах высказываются утверждения о свойствах основных неопределяемых понятиях некоторые теории к системе аксиом предлагаются требования независимости, непротиворечивости, полноты.

Постулат (от лат. требование) – это предложение в котором выражаются некоторое требование (условие) к которому должно удовлетворять некоторое понятие или некоторого отношения между понятиями.

Теорема (от греч. рассматриваю, зрелище) – математическое предположение, истинность которого устанавливается по средствам доказательства (рассуждения).

2.В любой теореме можно выделить разъяснительную часть (Р), условие (А), заключение (В).

Пример: В теореме «если две прямые // 3-й, то они // между собой».

Р: три прямые

А: 2 // 3-й

В: 3 прямые // между собой

Любую теорему на языке логики можно записать так Р/А В или АВ.

Теорема имеющая одно условие называется простой.

Если имеется несколько условий, то называется теорема сложной.

К-во Просмотров: 687
Бесплатно скачать Учебное пособие: Теория и методика обучения математике