Учебное пособие: Теория и методика обучения математике
1) если 2 // прямые пересечены третьей, то накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов (АВ1 В2)
2) если диагональ четырехугольника точкой пересечения делится пополам, то эта фигура ромб (А1А2В).
Каждая сложная теорема может быть предложена в виде нескольких простых.
Для словесной формулировки теорем используется условное (со словами или … то) и категорическое (без этих слов)
Условная формы формулировки теорем отражает ее структуру и импликация высказываний из АВ.
Условная формы формулировки теорем удобна для изучения в ней после слов если, дается условие теоремы то, ее заключение.
П-р: 1) Средняя линия треугольника // основанию (категорическая форма)
2) Если диагонали параллелограмма равны, то он является прямоугольником ( условная форма)
3) Вертикальные углы равны (категорическая форма)
4) Если два угла вертикальные, то они равны (условная форма).
С любой теоремой связаны еще 3 теоремы.
1. АВ- прямая
2. ВА- обратная
3. - противоположная к первой
4. - контропозитивная.
1 2 пары эквивалентных
3 4 теорем.
П-р: 1) Если четырехугольник параллелограмм, то его диагонали пересекаясь делятся пополам (АВ- истина)
2) Если в четырехугольнике диагонали пересекаясь делятся пополам, то этот четырехугольник параллелограмм (ВА- истина).
3) Если четырехугольник не параллелограмм, то его диагонали пересекаясь не делятся пополам (истина)
4) Если в четырехугольнике диагонали пересекаясь не делятся пополам, то этот четырехугольник не является параллелограммом (истина).
Отметим важные случаи простых и сложных теорем.
Следствие- это теорема, легко доказываемая с помощью одной теоремы.
Лемма- вспомогательная теорема представляющая интерес, только как ступень к доказательству другой теоремы.
Необходимое и достаточное условие.
Это теорема объединяющая в одной формулировке с использованием слов необходимо и достаточно прямую и обратную теорему.
АВ
-Теорема существования- это теорема, в которой отсутствуют условие и заключение, но утверждается существование какого-либо объекта, обладающего определенными свойствами ( Н-р: теорема существования параллельных прямых).
- Теорема единственности- эта теорема в которой нет условия и заключения, но утрачивается единственность какого-либо объекта, обладающего какими-то свойствами (Н-р: теорема единственности перпендикуляра к прямой проходящего через данную точку).