РЕШИТЕ пожалуйста неравенства , очень нужно!

РЕШИТЕ пожалуйста неравенства , очень нужно!
Гость
Ответ(ы) на вопрос:
Гость
11.8) а) √(x + 1) < x - 1 Область определения: x >= -1 Корень арифметический, то есть неотрицательный √(x + 1) >= 0 При x ∈ [-1; 0) справа число отрицательное, поэтому решений нет. При x > 0 x + 1 < (x - 1)^2 x + 1 < x^2 - 2x + 1 x^2 - 3x = x(x - 3) > 0 x < 0 U x > 3 Но мы уже знаем, что при x < 0 решений нет, поэтому x > 3 б) √(x + 1) < x + 1 Область определения: x >= -1 Корень арифметический, то есть неотрицательный √(x + 1) >= 0 При x >= -1 справа число неотрицательное, все нормально. x + 1 < (x + 1)^2 x + 1 < x^2 + 2x + 1 x^2 + x = x(x + 1) > 0 x < -1 U x > 0 Но при x < -1 решений нет, поэтому x > 0 11.9. а) √(x + 1) > x - 1 Область определения: x >= -1 Корень арифметический, то есть неотрицательный √(x + 1) >= 0 При x ∈ [-1; 1) справа число отрицательное, поэтому решения x ∈ [-1; 1) При x = 1 слева √2, а справа 0, значит, 1 - тоже решение. x ∈ [-1; 1] При x > 1 x + 1 > (x - 1)^2 x + 1 > x^2 - 2x + 1 x^2 - 3x = x(x - 3) < 0 x ∈ (0; 3) Но по условию x > 1, поэтому x ∈ (1; 3) Ответ: x ∈ [-1; 3) б) √(2x + 1) > x - 1 Область определения: x >= -1/2 Корень арифметический, то есть неотрицательный √(2x + 1) >= 0 При x ∈ [-1/2; 1) справа число отрицательное, поэтому решения x ∈ [-1/2; 1) При x = 1 слева √3, а справа 0, значит, 1 - тоже решение. x ∈ [-1/2; 1] При x > 1 2x + 1 > (x - 1)^2 2x + 1 > x^2 - 2x + 1 x^2 - 4x = x(x - 4) < 0 x ∈ (0; 4) Но по условию x > 1, поэтому x ∈ (1; 4) Ответ: x ∈ [-1/2; 4)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы