В треугольник со сторонами 5,8 и 10 вписана окружность.К окружности поведена касате?

В треугольник со сторонами 5,8 и 10 вписана окружность.К окружности поведена касате??ьная,пересекающая две стороны треугольника.Какое наименьшее значение может быть у периметра треугольника,отсеченного этой касательной от исходного треугольника?
Гость
Ответ(ы) на вопрос:
Гость
Дано : AB =c =5 ; BC =a =8 ; AC =b =10.  D , E ,F точки касания вписанной окружности соответственно со сторонами AB , BC и  AC. Обозначаем: AD=AF =x ; BD=BE =y ; CE=CF =z. a=BC=BE+CE =BD+CF=(AB-AD)+(AC-AF)=(AB+AC-2AD) =(b+c-2x) ⇒  2x =b+c -a=b+c -a =b+c+a-2a =P-2a =2(p-a),где p=P/2_полупериметр. аналогично : 2y =P-2b  и  2z  =P-2c  ; здесь P=5+8+10 =23. * * *   x= p -a , y =p -b ,z =p -c  ; p =(a+b+c)/2_полупериметр. * * * Пусть MN касательная к этой окружности ,которая пересекает AB  в точке  M (M∈ [AB] и сторону AC в точке N (N∈ [AC]) и окружность в точке K. Периметр треугольника AMN: P₁=P(AMN)=AM+MN+NA =AM+(MK +KN)+NA=AM+MD+NF+NA= AD+AF =2AD=2x . P₁=2x =P-2a =23-2*8 =7.   (вершина A) аналогично :  P₂ =2y=P-2b =23 -2*10=3.  (вершина B). P₃ =2z=P-2c =23 -2*5 =13. (вершина C) ответ: 3.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы