Дипломная работа: Дифференциальная геометрия поверхностей Каталана
Пусть .
Решим уравнение, например, для координаты .
Сделаем замену: .
.
.
Подставим в .
. Т.е. имеет вид:
Вычислим производные для проверки.
,
.
Теперь видно, что в каждой точке векторы и коллинеарные, поэтому смешанное произведение будет заведомо равно нулю (другого и быть не могло, собственно).
Теперь нам надо сделать так, чтобы нашлись 3 вектора не лежащие в одной плоскости (при соответствующих значениях параметра).
Т.е.
,
,
.
И при этом: .
Поскольку сдвиг в пространстве всех этих трех векторов не повлияет на равенство (или не равенство) нулю смешанного произведения, то достаточно рассматривать векторы:
,
,
.
А эти векторы, очевидно, лежат в одной плоскости. Так что добиться выполнения утверждения о коллинеарности векторов и в каждой точке, при выполнении, которого поверхность не будет являться поверхностью Каталана – нельзя.
Значит, стоит подумать о примере, который обеспечивает выполнение этого условия в одной точке, в которой, разумеется, мы должны «повернуть» плоскость образующих линейчатой поверхности.