Дипломная работа: Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку
(1.24)
Отже, установлена наступна теорема:
Теорема 1.2 Система (1.14) має приватний інтеграл (1.13), коефіцієнти якого виражаються формулами (1.19) - (1.22), за умови, що коефіцієнти системи зв'язані співвідношеннями (1.23), (1.24) і b1 (0, b2 (0, a1=2b2.
1.3 Необхідні й достатні умови існування в системи (1.1) двох часток інтегралів (1.3), (1.13)
У розділах 1.1-1.2 ми одержали, що система (1.1) буде мати дві частки інтеграла у вигляді кривих другого порядку за умови, що коефіцієнти системи зв'язані співвідношеннями:
(1.25)
Причому b1 (0, b2 (0, a1 (0, b1a-b2b (0.
Виражаючи c з першого рівняння системи (1.25), одержимо
(1.26)
Підставимо (1.26) у друге й третє рівняння системи (1.25).
Одержимо два співвідношення, що зв'язують параметри a, b, d, a2, b1, b2:
.
Нехай і
(1.27)
З першого рівняння системи (1.27) одержимо
Підставляючи в друге рівняння системи (1.27), знайдемо
.
Зі співвідношень (1.25) при умовах (1.27) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
(1.28)
(1.29)
(1.30)
, , , , (1.31)
Рівності (1.9) - (1.11), (1.19) - (1.22) за умови, що мають місце формули (1.28) - (1.31), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
a1 (1.32)
a2 (1.33)
a3 (1.34)
s (1.35)