Дипломная работа: Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку
g (1.37)
d (1.38)
Теорема 1.3 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.32) - (1.38), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.28) - (1.31).
Нехай
(1.39)
З першого рівняння системи (1.39) знайдемо
, .
Підставляючи в друге рівняння системи (1.39), одержимо рівність:
(1.40)
Оскільки , те розглянемо два випадки: , тоді .
Зі співвідношень (1.25) при умовах (1.39) і (1.40) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
, , (1.41)
, , , , (1.42)
Рівності (1.9) - (1.11), (1.19) - (1.22) за умови, що мають місце формули (1.41) - (1.42), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
a1 (1.43),a2 (1.44)
a3 (1.45), s (1.46)
(=0 (1.47)
g (1.48),
d (1.49)
Теорема 1.4 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.43) - (1.49), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.41) - (1.42).
б) (1.50), (1.51)
З (1.50) знайдемо :
Зі співвідношень (1.25) при умовах (1.39) і (1.50) - (1.51) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
, - будь-яке число, (1.52)
, , , , (1.53)
Рівності (1.9) - (1.11) і (1.19) - (1.22) за умови, що мають місце формули (1.52) - (1.53), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
(1=0 (1.54), a2 (1.55)
a (1.56)