Дипломная работа: Кинетические уравнения Власова
(4.1)
где Sр означает действие частиц (particles), Sf — действие полей (fields), Sp-f — действие частиц-полей (particles-fields).
Здесь а означает сорт частиц, отличаемый по массе mа и заряду еa, q нумерует частицы внутри сорта, (q.t) ( = 0,1.2,3; q =1,...,Na; a=1..... r) — 4 координаты q-й частицы copтa a, Au(x) — потенциал, — электромагнитные поля, - метрика Минковского: , т.е. диагональная матрица с 1 на первом месте и (-1) на остальных. Варьирование проводим специальным способом: сначала получаем движение частицы в поле, потом поля с заданными движениями частиц. Однако для частиц мы перейдем к функциям распределения, что и даст искомую систему уравнений.
1. Варьирование Sp + Sp+f по координатам (q.t)) даст уравнение движения зарядов в поле. Перепишем для метрики Минковского (в дальнейшем греческие индексы , пробегают четыре значения: = 0,1,2,3; латинские i,j —три: i = 1,2,3):
где Lp, — лагранжиан частиц.
Здесь (i = 1,2,3) — трехмерный квадрат скорости, и мы учли, что х° = ct и вынесли с2 из-под корня. Проварьируем это выражение (опуская а):
Варьируем Sp-f (снова опускаем а):
Отсюда из условия = 0 получаем уравнение движения заряженной частицы в поле:
уравнение больцман власов динамический модельный
где
2. Уравнение для функции распределения получается как уравнение сдвига вдоль траекторий полученной динамической системы движения зарядов в поле. Видно, что удобно взять функцию распределения oт импульсов, а не от скоростей. При этом надо выразить скорости через импульсы:
Обозначая получаем = Отсюда находим уравнение для функции распределения fa(x,p,t) (аналог 1.4):
(4.2)
Здесь Использовано, что
В это уравнение записано для ионов и электронов в следующем виде:
(4.3)
Здесь fi(t, р, х) — функция распределения ионов по пространству и импульсам в момент времени t (i в (4.3) — первая буква слова ion. а не индекс), fе(t, р, х) — функция распределения электронов, ze — заряд иона, (—е) — заряд электрона, [v, B] — векторное произведение. Не выписано выражение v через р, однако часто его берут классическим: vаj = pj/ma , и тогда удобно записать уравнения через функцию распределения f(t, v, х) по скоростям вместо импульса. В записи (4.3) v надо брать различными для электронов и ионов, т.е. (4.3) требует уточнения, где vi , а где vc вместо v, и каковы эти функции, как функции импульса vi(p) и vc(p).
3. Уравнение для полей. Используем функцию распределения вместо плотности. Сначала надо переписать Sp-f через функцию распределения, совершив переход
после чего Sp-f запишется в виде
Теперь варьируем по потенциалам Аu(х):