Дипломная работа: Контрольные задания для заочников по математике

Министерство образования Российской Федерации

государственный технический университет

МАТЕМАТИКА

Методические указания и контрольные задания

для студентов-заочников всех специальностей

Одобрено

редакционно-издательским советом

государственного

технического университета

2004

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ

Перед выполнением контрольной работы студент должен изучить соответствующие разделы курса “Математика”, используя учебную литературу. Список рекомендуемой литературы приведен в методических указаниях. Студент может использовать также учебники и учебные пособия, не включенные в данный список, если эти пособия содержат соответствующие разделы учебного курса.

Контрольная работа выполняется в отдельной тетради. На обложке тетради необходимо указать название учебной дисциплины, номер контрольной работы, а также полностью фамилию, имя и отчество студента, его адрес, специальность, номер студенческой группы, шифр (номер зачетной книжки) и дату отправки работы в институт.

Задачи контрольной работы выбираются в соответствии с указаниями преподавателя из таблиц вариантов. Вариант определяется двумя последними цифрами номера зачетной книжки. Предпоследняя цифра номера определяет таблицу вариантов, последняя цифра номера определяет столбец в выбранной таблице. Представленная для рецензирования контрольная работа должна содержать все задачи, указанные преподавателем. Решения задач следует приводить в той последовательности, которая определена в таблице вариантов. Условие каждой задачи должно быть приведено полностью перед ее решением. Контрольная работа должна быть подписана студентом.

Зачет по контрольной работе выставляется по результатам рецензирования и собеседования. Перед собеседованием студент обязан исправить в работе ошибки, отмеченные рецензентом.

Зачет по контрольным работам является обязательным для допуска к сдаче зачетов и экзаменов, которые предусмотрены учебным планом.

ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

1. -10. Векторы a, b, c, d заданы координатами в некотором базисе. Показать, что векторы a, b, c образуют базис в пространстве, и найти координаты вектора d в этом базисе.

1. a=(3; 2; 2),b=(2; 3; 1),c=(1; 1; 3),d=(5; 1; 11).

2. a=(1; 2; 3),b=(-2; 3; - 2),c=(3; - 4; - 5),d=(6; 20; 6).

3. a=(4; 2; 5),b=(-3; 5; 6),c=(2; - 3; - 2),d=(9; 4; 18).

4. a=(1; 2; 4),b=(1; - 1; 1),c=(2; 2; 4),d=(-1; - 4; - 2).

5. a=(2; 3; 3),b=(-1; 4; - 2),c=(-1; - 2; 4),d=(4; 11; 11).

6. a=(1; 8; 4),b=(1; 3; 1),c=(-1; - 6; - 3),d=(1; 2; 3).

7. a=(7; 4; 2),b=(-5; 0; 3),c=(0; 11; 4),d=(31; - 43; - 20).

8. a=(3; 2; 1),b=(4; - 1; 5),c=(2; - 3; 1),d=(8; - 4; 0).

9. a=(1; 3; 3),b=(-4; 1; - 5),c=(-2; 1; - 6),d=(-3; 5; - 9).

10. a=(1; 5; 3),b=(2; 1; - 1),c=(4; 2; 1),d=(31; 20; 9).

11. -20. Даны координаты точек A1, A2, A3, A4. Известно, что отрезки A1A2, A1A3, A1A4 являются смежными ребрами параллелепипеда. Требуется найти:

длину ребра A1A2; 2) угол между ребрами A1A2 и A1A3; 3) площадь грани, содержащей вершины A1,A2,A3; 4) объем параллелепипеда; 5) уравнение прямой, проходящей через вершину A1 вдоль диагонали параллелепипеда; 6) уравнение плоскости A1A2A3; 7) угол между ребром A1A4 и гранью, содержащей вершины A1,A2,A3; 8) расстояние от вершины A4 до плоскости A1,A2,A3. Сделать чертеж.

11. A1(0; 3; 2),A2(-1; 3; 6),A3(-2; 4; 2),A4(0; 5; 4).

12. A1(4; 2; 5),A2(0; 7; 2),A3(0; 2; 7),A4(1; 5; 0).

13. A1(-1; 2; 0),A2(-2; 2; 4),A3(-3; 3; 0),A4(-1; 4; 2).

14. A1(4; 4; 10),A2(4; 10; 2),A3(2; 8; 4),A4(9; 6; 4).

15. A1(2; 2; 3),A2(1; 2; 7),A3(0; 3; 3),A4(2; 4; 5).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 554
Бесплатно скачать Дипломная работа: Контрольные задания для заочников по математике