Дипломная работа: Контрольные задания для заочников по математике
Министерство образования Российской Федерации
государственный технический университет
МАТЕМАТИКА
Методические указания и контрольные задания
для студентов-заочников всех специальностей
Одобрено
редакционно-издательским советом
государственного
технического университета
2004
РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ
Перед выполнением контрольной работы студент должен изучить соответствующие разделы курса “Математика”, используя учебную литературу. Список рекомендуемой литературы приведен в методических указаниях. Студент может использовать также учебники и учебные пособия, не включенные в данный список, если эти пособия содержат соответствующие разделы учебного курса.
Контрольная работа выполняется в отдельной тетради. На обложке тетради необходимо указать название учебной дисциплины, номер контрольной работы, а также полностью фамилию, имя и отчество студента, его адрес, специальность, номер студенческой группы, шифр (номер зачетной книжки) и дату отправки работы в институт.
Задачи контрольной работы выбираются в соответствии с указаниями преподавателя из таблиц вариантов. Вариант определяется двумя последними цифрами номера зачетной книжки. Предпоследняя цифра номера определяет таблицу вариантов, последняя цифра номера определяет столбец в выбранной таблице. Представленная для рецензирования контрольная работа должна содержать все задачи, указанные преподавателем. Решения задач следует приводить в той последовательности, которая определена в таблице вариантов. Условие каждой задачи должно быть приведено полностью перед ее решением. Контрольная работа должна быть подписана студентом.
Зачет по контрольной работе выставляется по результатам рецензирования и собеседования. Перед собеседованием студент обязан исправить в работе ошибки, отмеченные рецензентом.
Зачет по контрольным работам является обязательным для допуска к сдаче зачетов и экзаменов, которые предусмотрены учебным планом.
ВЕКТОРНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
1. -10. Векторы a, b, c, d заданы координатами в некотором базисе. Показать, что векторы a, b, c образуют базис в пространстве, и найти координаты вектора d в этом базисе.
1. a=(3; 2; 2),b=(2; 3; 1),c=(1; 1; 3),d=(5; 1; 11).
2. a=(1; 2; 3),b=(-2; 3; - 2),c=(3; - 4; - 5),d=(6; 20; 6).
3. a=(4; 2; 5),b=(-3; 5; 6),c=(2; - 3; - 2),d=(9; 4; 18).
4. a=(1; 2; 4),b=(1; - 1; 1),c=(2; 2; 4),d=(-1; - 4; - 2).
5. a=(2; 3; 3),b=(-1; 4; - 2),c=(-1; - 2; 4),d=(4; 11; 11).
6. a=(1; 8; 4),b=(1; 3; 1),c=(-1; - 6; - 3),d=(1; 2; 3).
7. a=(7; 4; 2),b=(-5; 0; 3),c=(0; 11; 4),d=(31; - 43; - 20).
8. a=(3; 2; 1),b=(4; - 1; 5),c=(2; - 3; 1),d=(8; - 4; 0).
9. a=(1; 3; 3),b=(-4; 1; - 5),c=(-2; 1; - 6),d=(-3; 5; - 9).
10. a=(1; 5; 3),b=(2; 1; - 1),c=(4; 2; 1),d=(31; 20; 9).
11. -20. Даны координаты точек A1, A2, A3, A4. Известно, что отрезки A1A2, A1A3, A1A4 являются смежными ребрами параллелепипеда. Требуется найти:
длину ребра A1A2; 2) угол между ребрами A1A2 и A1A3; 3) площадь грани, содержащей вершины A1,A2,A3; 4) объем параллелепипеда; 5) уравнение прямой, проходящей через вершину A1 вдоль диагонали параллелепипеда; 6) уравнение плоскости A1A2A3; 7) угол между ребром A1A4 и гранью, содержащей вершины A1,A2,A3; 8) расстояние от вершины A4 до плоскости A1,A2,A3. Сделать чертеж.
11. A1(0; 3; 2),A2(-1; 3; 6),A3(-2; 4; 2),A4(0; 5; 4).
12. A1(4; 2; 5),A2(0; 7; 2),A3(0; 2; 7),A4(1; 5; 0).
13. A1(-1; 2; 0),A2(-2; 2; 4),A3(-3; 3; 0),A4(-1; 4; 2).
14. A1(4; 4; 10),A2(4; 10; 2),A3(2; 8; 4),A4(9; 6; 4).
15. A1(2; 2; 3),A2(1; 2; 7),A3(0; 3; 3),A4(2; 4; 5).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--