Дипломная работа: Линейные дифференциальные уравнения

(I) |A+B| |A|+|B|,

(II) |AB| |A|*|B|,

(III) |Ax| |A|*|x|,

где А и В – матрицы, х – n-мерный вектор.

По определению, расстояние между двумя матрицами А и В равно |A-B|, и это расстояние удовлетворяет обычным свойствам метрики.

Нулевая матрица будет обозначаться через О, единичная – через Е. В случае опасности смешения размерностей эти квадратные матрицы порядка n будут обозначаться соответственно через Оn и Еn .

Заметим, что | Оn | = 0 и | Еn | = n, а не 1.

Комплексно сопряженной матрицей для А = (aij ) называется матрица , где - комплексно сопряженные числа для aij . Транспонированная матрица обозначается через и определяется так: . Сопряженная матрица для А определяется так: . Заметим, что |A*|=||=||=|A|. Далее, (АВ)*=В*А*. Определитель матрицы А обозначается как det А.

Если det А = 0, то матрица А называется особой. Не особая матрица имеет обратную матрицу А-1 , которая удовлетворяет соотношениям

А А-1 = А-1А = Е.

Многочлен det (λЕ-А) степени n от λ называется характеристическим многочленом для матрицы А, а его корни – характеристическими корнями А. Если эти корни обозначены λi (i = 1, …, n), то

det (λЕ-А) =

Две квадратные матрицы А и В порядка n называются подобными, если существует Неособая квадратная матрица Р порядка n, такая что

В = РАР-1.

Если А и В подобны, то они имеют один и тот же характеристический многочлен, ибо

det (λЕ-В) = det (Р(λЕ-А)Р-1 )= det Р* det (λЕ-А)* det Р-1 = det (λЕ-А).

В частности, коэффициенты многочлена det (λЕ-А) при степенях λ инвариантны относительно преобразования подобия. Два наиболее важных инварианта - det А и sp A – определитель и след А соответственно.

Приведем следующий фундаментальный результат о канонической форме матрицы.

Теорема 1.1 Каждая квадратная матрица А порядка n и подобная матрица вида

где J0 – диагональная матрица с элементами λ1 , λ2 ,…, λq и

(i = 1, …, s).

Здесь λj , j = 1, …, q+s, - характеристические корни А, не обязательно различные. Если λj – простой корень, то он встречается в J0 и поэтому, если все корни различны, А подобна диагональной матрице

Из теоремы 1.1 непосредственно следует, что

det А = , spA =

где произведение и сумма распространены на все корни, причем каждый корень считается столько раз, каков а его кратность. Матрицы Ji имеют вид

Ji = λq + i Еri +Zi ,

где Ji – квадратная матрица порядка ri и

К-во Просмотров: 682
Бесплатно скачать Дипломная работа: Линейные дифференциальные уравнения