Дипломная работа: Линейные дифференциальные уравнения

,

однако здесь необходимо ограничение .

1.4 Линейные системы с постоянными коэффициентами

Пусть А – постоянная квадратная матрица порядка n и рассмотрим соответствующую однородную систему

. (4.1)

Если n = 1, то (4.1) имеет очевидное решение еt А , и решение, которое при t = τ равно ξ , имеет вид е( t -τ)А ξ . Оказывается, что решение имеет эту форму и в том случае, когда х, ξ являются векторами произвольной конечной размерности и А – квадратная матрица порядка n.

Теорема 4.1. Фундаментальная матрица Ф системы (4.1) дается формулой

Ф(t) = еt А (|t| < ), (4.2)

и решение φ системы (4.1), удовлетворяющее условию

φ(τ) = ξ (|τ | < , | ξ | < ),

имеет вид

φ(t) = е( t -τ)А ξ (|t| < ). (4.3)


Доказательство. Так как е( t t = еt А еΔ t А , то из определения производной легко получаем, что

Поэтому Ф(t) = еt А есть решение системы (4.1). Так как Ф(0) = Е, то из (1.8) следует, что det Ф(t) = еtsp А . Итак, Ф – фундаментальная матрица. Теперь формула (4.3) очевидна.

Замечание. Заметим, что выражение не обязано быть решением системы , если матрицы А(t) и не коммутируют. Они коммутируют, когда матрица А(t) либо постоянная, либо диагональная.

Интересно исследовать структуру фундаментальной матрицы (4.2). пусть J – каноническая форма матрицы А, указанная в теореме 1.1, и предположим, что Р – неособая постоянная матрица, такая, что АР = PJ.

Тогда

(4.4)

и J имеет вид

(4.5)

где J0 – диагональная матрица с элементами λ1 , λ2 ,…, λq и

(i = 1, …, s). (4.6)

Далее,

(4.7)

и легкое вычисление показывает, что

(4.8)

Так как , то . Таким образом,

(4.9)

где - квадратная матрица порядка ri (n = q + r1 + … + rs ). Поэтому, если известна каноническая форма (4.5), (4.6) матрицы А, то фундаментальная матрица еt А системы (4.1) дается в явном виде формулой (4.4), в которой еtJ может быть вычислена из (4.7), (4.8), (4.9).

К-во Просмотров: 685
Бесплатно скачать Дипломная работа: Линейные дифференциальные уравнения