Дипломная работа: Линейные дифференциальные уравнения

Хорошо известно и легко доказывается, что существует такая постоянная неособая матрица Т, применив которую к любому вектору х с n компонентами, получим матрицу Тх, имеющую своим m первыми компонентами компоненты вектора х с номерами i1 , …, im . Полагая =Тх, мы заменим (ЛО) аналогичной системой, для которой выполняется первоначальное ограничение. Так как х=Т-1 , то утверждение для х следует из доказанного уже утверждения для .

1.3 Неоднородные линейные системы

Пусть А – неособая квадратная матрица порядка n из непрерывных функций, определенных на действительном t-интервале I и b – непрерывный вектор на I, не равный тождественно нулю. Система уравнений

+b(t) (ЛН)

называется линейной неоднородной системой порядка n. Если элементы А и b непрерывны и даже измеримы и мажорируются суммируемой функцией на I, то существует единственное решение φ системы (ЛН), для которого

φ(τ) = ξ ,

где и | ξ | < . Единственность решения следует из того, что если бы существовало два решения φ1 и φ2 , то из разность φ = φ1 - φ2 была бы решением однородной системы (ЛО) на I при φ(τ) = 0. Но, по теореме единственности для (ЛО), разность φ должна равняться на I нулю тождественно и, следовательно, φ1 = φ2 .

Если известна фундаментальная матрица Ф системы (ЛО), то легко найти решение системы (ЛН).

Теорема 3.1. Если Ф - фундаментальная матрица для системы (ЛО), то функция

(3.1)

есть решение системы (ЛН), удовлетворяющее начальному условию

φ(τ) = 0 ().

Доказательство получается непосредственно при помощи прямой проверки.

Интуитивные соображения, с помощью которых можно получить выражение (3.1), заключаются в следующем6 для каждого постоянного вектора с функция Фс является решением системы (ЛО). Метод состоит в том, что мы рассматриваем с как функцию, определенную на I, и находим, какой должна быть с (если она существует), для того, чтобы функция φ = Фс была решением неоднородной системы (ЛН).

Пусть φ = Фс – решение системы (ЛН). Тогда

= =АФс + Ф= А φ + Ф= А φ + b,

где последнее равенство следует из (ЛН). Поэтому Ф= b, или

=b.

Последнее уравнение всегда разрешимо, причем если с(τ) = 0, то


.

Итак, φ определяется по формуле (3.1).

Легко видеть, что в условиях теоремы 3.1 решение системы (ЛН), удовлетворяющее условию φ(τ) = ξ (и | ξ | < ), дается в виде

, (3.2)

где - решение системы (ЛО), удовлетворяющее условию

φh (τ) = ξ .

Формула (3.1) (или (3.2)) называется формулой вариации постоянных для системы (ЛН).

Заметим, что формулу (3.1) можно записать в виде

,

где Ψ – фундаментальная матрица системы

,

К-во Просмотров: 676
Бесплатно скачать Дипломная работа: Линейные дифференциальные уравнения