Дипломная работа: Настоящая теория чисел

Например

Числовой ряд - 12, 13, 16, 22, 45, 68, 106, 111. Значения дельт - 1, 3, 6, 23, 23, 38, 5.

Сумма дельт равна 99, натуральный корень суммы равен 9. Следовательно, натуральные корни первого и последнего членов ряда должны быть равны.

Действительно, натуральные корни чисел 12 и 111 одинаковы и равны натуральному корню 3.

В этом же ряду мы обнаружим еще одну сумму дельт, натуральный корень которой равен 9, если начнем отсчет от числа 16 с натуральным корнем 7.

Значения дельт в этом случае - 6, 23, 23, 38, 5.

Натуральные корни дельт - 6, 5, 5, 2, 5.

Сложение натуральных корней: 6 + 5 = 11, 11 + 5 = 16, 16 + 2 = 18 ... Натуральный корень числа 18 равен 9. Это означает, что следующее в указанном ряду число будет иметь натуральный корень, равный 7. Действительно, число 106 имеет указанный натуральный корень.

______

Для удобства обозначим натуральные циклы через "Z ( | х + d)", где х - некоторый член цикла, d - дельта цикла, Z символ цикла натуральных корней.

Первым членом цикла q называется натуральный корень числа, получаемого в результате сложения (умножения, см.далее) последнего числа последовательности и дельты d(s). Данный принцип указывает на основное свойство циклов натуральных корней, а именно, первый член цикла натуральных корней всегда является результатом взаимодействия последнего члена цикла с дельтой (или ее членом) цикла.

_____

Основной цикл натуральных корней сложения Z ( |x + d) представляет из cебя объединение циклов натуральных корней сложения количеством h для первых h чисел основного цикла, каждый член которого расположен в основном цикле через h знаков и с дельтой цикла D, равной натуральному корню

суммы членов переменной дельты d основного цикла.

Например. Извлечем натуральные корни из числовой последовательности с первым членом х = 1 и переменной дельтой d = 1; 2, т.е. из числовой последовательности 1,2,4,5,7,8,10,11,13,14... Она примет вид 1,2,4,5,7,8,1,2,4... т.е.

_______

Z( |х + 1;2 ).

Натуральный корень суммы переменной дельты D = 1 + 2 = 3, количество значений переменной дельты h = 2.

Таким образом, полученный цикл 1,2,4,5,7,8 является совмещением 2-х циклов первых 2-х чисел, т.е. чисел 1 и 2, с дельтой цикла D = 1 + 2 = 3 и расположенными через 2 знака в основном цикле. Т.е. два цикла:

_____ _____

1,4,7 - Z( |7 + 3 ) и 2,5,8 - Z( |8 + 3).

Получив цикл 1,2,4,5,7,8 мы вправе поставить на место х число 8, дающее в сумме с членом дельты d1 = 2 первый член цикла - число 1.

Обратим внимание на то, что в полученной числовой последовательности сумма членов дельты составила число 9 к моменту появления числа 10, натуральный корень которого равен 1, при d = 1;2.

Частным случаем циклов натуральных корней сложения с переменной дельтой являются циклы натуральных корней сложения с постоянной дельтой. Для данных циклов, впрочем как для любых циклов натуральных корней действителен принцип объединения подциклов в основном цикле.

Рассмотрим отдельно циклы натуральных корней сложения с постоянной дельтой.

Например. Извлечем натуральные корни из членов арифметической прогрессии с d = 1 и первым членом у = 1: при извлечении натуральных корней прогрессия 1,2,3,4,5,6,7,8,9,10,11,12,13,14...n примет вид

______

1,2,3,4,5,6,7,8,9, т.е. Z( |0 + 1 ).

Если мы извлечем натуральные корни из арифметической прогрессии с d=1, но первым членом 2, то мы получим тот же цикл натуральных корней, но начинающийся с другого члена х = 2,

К-во Просмотров: 1661
Бесплатно скачать Дипломная работа: Настоящая теория чисел