Дипломная работа: Некоторые линейные операторы
§2. Непрерывные линейные операторы в нормированном
пространстве. Ограниченность и норма линейного оператора
Пусть , – нормированные пространства.
Определение 2 . Оператор А: Е Е1 называется непрерывным в точке , если какова бы не была последовательность xn x0 , А(xn ) сходится к А(x0 ). То есть, при p (xn , x0 ) 0, p (А(xn ), А(x0 )) 0.
Известно и другое (равносильное) определение непрерывности линейного оператора.
Определение 3. Отображение А называется непрерывным в точке x0 , если какова бы не была окрестность[3] U точки y0 = А (x0 ) можно указать окрестность V точки x0 такую, что А(V) U.
Иначе >0 >0, что как только p (x, x0 ) < , p (f(x), f(x0 )) < .
Теорема 1.
Если линейный оператор непрерывен в точке х0 = 0, то он непрерывен и в любой другой точке этого пространства.
Доказательство. Линейный оператор А непрерывен в точке х0 =0 тогда и только тогда, когда . Пусть оператор А непрерывен в точке х0 =0. Возьмем последовательность точек пространства хn ®х1 , тогда хn –х1 ®0, отсюда А(хn –х1 )®А(0)=0, т. е. А(хn –х1 )®0.
Так как А – это линейный оператор, то А(хn –х1 )®Ахn –Ах0 , а тогда
Ахn -Ах0 ® 0, или Ахn ®Ах0 .
Таким образом, из того, что линейный оператор А непрерывен в точке х0 =0, следует непрерывность в любой другой точке пространства.
т. д-на.
Пример.
Пусть задано отображение F(y) = y(1) пространства С[0, 1] в R. Проверим, является ли это отображение непрерывным.
Решение.
Пусть y(x) – произвольный элемент пространства С[0, 1] и yn (x) – произвольная сходящаяся к нему последовательность. Это означает:
p (yn , y) = |yn (x)- y(x))| = 0.
Рассмотрим последовательность образов: F(yn ) = yn (1).
Расстояние в R определено следующим образом:
p (F(yn ), F(y)) = |F(yn ) - F(y))| = | yn (1) - y(1)| |yn (x)- y(x))|=p(yn ,y),
то есть p (F(yn ), F(y)) 0.
Таким образом, F непрерывно в любой точке пространства С[ a , b ] , то есть непрерывно на всем пространстве.
С понятием непрерывности линейного оператора тесно связано понятие ограниченности.
Определение 4. Линейный оператор А: Е Е1 называется ограниченным , если можно указать число K>0 такое, что
||Аx|| K||x||. (1)
Теорема 2.
Среди всех констант K, удовлетворяющих (1), имеется наименьшее.
Доказательство:
Пусть множество S – множество всех констант K, удовлетворяющих (1), будучи ограниченным снизу (числом 0), имеет нижнюю грань k. Достаточно показать, что k S.
По свойству нижней грани в S можно указать последовательность (kn ), сходящуюся к k. Так как kn S, то выполняется неравенство: |А(x)| kn ||x||, (xE). Переходя в этом неравенстве к пределу
получаем |А(x)| k||x||, где (xE), (k S).
т. д-на.